

Ville Saarinen

DESIGN AND IMPLEMENTATION OF A
WEB-BASED DATA TRANSFER

MODULE IN MICROSCADA X DMS600

Master of Science Thesis
Faculty of Information Technology and Communication Sciences

Examiner: Prof. Hannu-Matti Järvinen, Teemu Leppälä
December 2023

i

ABSTRACT

Ville Saarinen: Design and Implementation of a Web-Based Data Transfer Module in Mi-

croSCADA X DMS600

Master of Science Thesis

Tampere University

Master’s Degree Programme in Information Technology

December 2023

Electrical network distribution system operators are required to export their infrastructure and
construction plan data to centralised data point for co-operative joint construction. The amount of
data to be transferred per operator is large, and the data must be kept up to date. An automated
programmatic solution would reduce workload, be consistent, and ensure that information is co-
hesive. This research aims to design, implement, and validate the first version of such software
that exports construction plan data to the centralised information point via the provided web inter-
face.

Multiple stakeholders affect the motives, objectives, and restrictions set for the software di-
rectly or indirectly. Direct stakeholders include the Finnish Transportation- and Communication
Agency (Traficom), Hitachi Energy, and distribution system operators that are Hitachi Energy’s
customers. Indirect stakeholders are the European Union and the Parliament of Finland.

This research begins by addressing the directives, laws, and orders regarding joint construc-
tion. Firstly, the European Union has set a directive about joint construction and usage, which led
to Finnish law on the same subject. Traficom was ordered to implement the centralized infor-
mation point. They then constructed an act regarding Finnish distribution system operators to
send network data and construction plans to the information point.

Some of these operators are customers of Hitachi Energy. Their needs are the basis for the
feature design of the software. Most web communication-related restrictions on technologies are
set by Traficom since they operate the information point. Internal restrictions on the design of the
software are set by Hitachi Energy. These internal restrictions dictate used technologies regarding
mainly implementation and validation of the software.

The main concentration of research in used technologies is on relevant web technologies.
These include RESTful application programming interfaces (REST API), hypertext transfer proto-
col (HTTP) communication, and authentication using JSON web tokens (JWT). Another re-
searched area of software development is validation and more precisely automatic testing of soft-
ware. Different principles and concepts are examined, such as two schools of unit testing: Clas-
sical and London. These principles are then used in researching practical testing methodologies,
mainly unit testing.

The practical section of this research consists of designing, implementing, and validating the
first version of the software. The practical section is bound with the theory researched earlier. The
design of the software consists of architecture and deeper module design, fulfilling the set re-
quirements and constraints. Implementation of the software is done using C#. Validation of the
program is made with automated unit testing using MSBuild, and static scanning using So-
narQube. Software project is then added to the product portfolio in version control and build sys-
tem using continuous integration methodologies.

Technologies regarding the whole system are analysed upon suitability and security. Improve-
ments to these are suggested in the evaluation, although some of the used technologies were
dictated by Traficom. The first version of the software solution is also evaluated: difficulties of the
project are addressed, deficiencies are noted, and suggestions regarding follow-up and next
steps are given.

Keywords: software design, unit testing, application programming interface

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Ville Saarinen: Web-Pohjaisen Tiedonsiirtorajapinnan Suunnittelu ja Toteutus MicroSCADA X

DMS600 Tuotteeseen

Diplomityö

Tampereen yliopisto

Tietotekniikan DI-ohjelma

Joulukuu 2023

Sähköverkon jakeluverkonhaltijoiden on toimitettava infrastruktuuri- ja

rakentamissuunnitelmatietonsa keskitettyyn tietopisteeseen yhteisrakentamista varten.
Siirrettävän tiedon määrä operaattoria kohden on suuri, ja tiedot on pidettävä ajan tasalla.
Automatisoitu ohjelmallinen ratkaisu vähentäisi työmäärää, takaisi johdonmukaisuuden ja
varmistaisi tiedon yhtenäisyyden. Tämän tutkimuksen tavoitteena on suunnitella, toteuttaa ja
validoida ensimmäinen versio sellaisesta ohjelmistosta, joka vie rakennussuunnitelmatiedot
tähän keskitettyyn tietopisteeseen ohjelmallisen rajapinnan kautta.

Useat sidosryhmät vaikuttavat ohjelmistolle asetettuihin motiiveihin, tavoitteisiin ja rajoituksiin
suoraan tai välillisesti. Suoria sidosryhmiä ovat Liikenne- ja viestintävirasto (Traficom), Hitachi
Energy sekä Hitachi Energyn asiakkaita olevat jakeluverkonhaltijat. Välillisiä sidosryhmiä ovat
Euroopan unioni ja eduskunta.

Tämä tutkimus alkaa käsittelemällä yhteisrakentamiseen liittyviä direktiivejä, lakeja ja
määräyksiä. Euroopan unioni on asettanut yhteisrakentamisesta ja yhteiskäytöstä direktiivin, joka
johti Suomen lakiin samasta aiheesta. Traficom määrättiin toteuttamaan keskitetty tietopiste. Sen
jälkeen he asettivat Suomen jakeluverkonhaltijoita koskevan asetuksen verkkotietojen ja
rakentamissuunnitelmien lähettämisestä tietopisteeseen.

Jotkut näistä operaattoreista ovat Hitachi Energyn asiakkaita. Niiden tarpeet ovat tämän
luotavan ohjelmiston ominaisuussuunnittelun perusta. Suurin osa verkkoviestintään liittyvistä
teknologioiden rajoituksista on Traficomin asettamia, koska he ylläpitävät tietopistettä. Hitachi
Energy asettaa sisäiset rajoitukset ohjelmiston suunnittelulle. Nämä sisäiset rajoitukset sanelevat
käytettävät tekniikat lähinnä ohjelmiston toteutuksessa ja validoinnissa.

Työssä teknologioiden tutkimus keskittyy pääasiassa asiaankuuluviin verkkoteknologioihin.
Näitä ovat RESTful-sovellusohjelmointirajapinnat (REST API), hypertekstinsiirtoprotokolla
(HTTP) -viestintä ja autentikaatio JSON-verkkotunnuksilla (JWT). Toinen ohjelmistokehityksen
tutkittu alue on ohjelmistojen validointi ja tarkemmin sanottuna automaattinen testaus. Työssä
tarkastellaan erilaisia periaatteita ja käsitteitä, kuten kahta yksikkötestauksen koulukuntaa:
Klassinen ja Lontoo. Näitä periaatteita hyödynnetään sitten tutkittaessa käytännön
testausmenetelmiä, lähinnä yksikkötestausta.

Tämän tutkimuksen käytännön osa koostuu ohjelmiston ensimmäisen version suunnittelusta,
toteutuksesta ja validoinnista. Käytännön osuus on sidottu aiemmin työssä tutkittuun teoriaan.
Ohjelmiston suunnittelu koostuu arkkitehtuurista ja syvemmästä moduulisuunnittelusta, joka
täyttää asetetut vaatimukset ja rajoitukset. Ohjelmiston toteutus tapahtuu C#:lla. Ohjelman
validointi tehdään automaattisella yksikkötestauksella käyttäen MSBuild:a ja staattisella
skannauksella käyttäen SonarQubea. Ohjelmistoprojekti lisätään sitten tuotevalikoimaan
jatkuvan integroinnin menetelmillä versionhallinta- sekä rakennusjärjestelmässä.

Koko järjestelmää koskevia teknologioita analysoidaan soveltuvuuden ja tietoturvan
perusteella. Arvioinnissa ehdotetaan parannuksia näihin, vaikka osa käytetyistä teknologioista on
Traficomin sanelemia. Ohjelmistoratkaisun ensimmäinen versio myös arvioidaan: projektin
vaikeudet käsitellään, puutteet todetaan ja ehdotuksia jatkotoimiksi annetaan.

Avainsanat: ohjelmistosuunnittelu, yksikkötestaus, ohjelmistorajapinta

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This Master of Science thesis was conducted at Tampere University in 2022 and 2023.

Hitachi Energy commissioned it. I had worked for Hitachi Energy for multiple years before

this thesis. An upcoming project had an interesting part, so I suggested combining this

research with it.

I would like to thank my examiner, Professor Hannu-Matti Järvinen from Tampere Uni-

versity, for valuable feedback and guidance. I would also like to thank my examiner from

Hitachi Energy, Teemu Leppälä, for guidance with this research and the constructive part

related to the mentioned project. Lastly, I would like to thank Hitachi Energy for allowing

me to conduct this research.

Helsinki, 15 December 2023

Ville Saarinen

iv

CONTENTS

1. INTRODUCTION... 1

2. BACKGROUND AND MOTIVATION ... 2

2.1 Directives, laws, and ordinances .. 2

2.2 Hitachi Energy objectives ... 5

2.3 Objectives of a distribution system operator ... 7

2.4 Existing centralized electrical network data systems 8

3. WEB TECHNOLOGIES... 9

3.1 URI .. 9

3.2 HTTP ... 11

3.3 Application programming interfaces ... 15

3.4 Representational state transfer .. 18

3.5 Authentication and authorization .. 23

3.6 Web Tokens ... 24

3.6.1 Simple Web Token .. 24
3.6.2 JavaScript Object Notation .. 25
3.6.3 JSON Web Token ... 26
3.6.4 JSON Web Algorithms .. 28
3.6.5 JSON Web Signature .. 29
3.6.6 JSON Web Encryption .. 31

4. AUTOMATED SOFTWARE TESTING .. 33

4.1 Automated testing concepts ... 35

4.2 Testing measurements ... 38

4.3 Unit testing ... 41

4.3.1 Dependencies and testing doubles ... 41
4.3.2 Testing concepts ... 43
4.3.3 Test-driven development ... 44
4.3.4 Test case design ... 46
4.3.5 Test practicalities .. 47

4.4 Integration testing... 48

4.5 Continuous integration ... 48

5. DESIGN AND IMPLEMENTATION ... 51

5.1 Requirements and constraints .. 51

5.2 System architecture ... 52

5.3 Programmatic decisions ... 54

5.4 Automated testing .. 60

5.5 Continuous integration ... 63

6. EVALUATION AND FOLLOW-UP ... 65

6.1 Fulfilment of requirements .. 65

6.2 Suitability of used technologies .. 66

6.3 Security considerations .. 67

v

6.4 Further development .. 68

REFERENCES ... 70

vi

LIST OF FIGURES

Figure 1: Construction plan editing in DMS600 Network Editor. 6
Figure 2. general URI’s hierarchical sections. [13] .. 9
Figure 3. Authority section in general URI syntax. [13] .. 10
Figure 4. URL format in HTTP/1.1 scheme. [15] ... 11
Figure 5. Web API within client-server interaction. [12] ... 16
Figure 6. Client-server system. [27] .. 19
Figure 7. Stateless client-server system. [27] .. 20
Figure 8. Stateless client-cache-server system. [27] ... 20
Figure 9. Stateless and uniform client-cache-server system. [27]................................ 21
Figure 10. Layered, stateless, and uniform client-cache-server system. [27] 21
Figure 11. Layered, stateless, and uniform client-cache-server system with code-

on-demand. Full REST architecture style. [27] 22
Figure 12. JSON values [36] ... 25
Figure 13. JSON object format [36] ... 26
Figure 14. JSON array format [36] .. 26
Figure 15. JSON Web Signature using JWS compact serialization. [44] 30
Figure 16. JSON Web Signature using JWS JSON Serialization. [43] 30
Figure 17. Example JWS protected header in plain text. [43] 30
Figure 18. Example JWS payload in plain text. [43] .. 31
Figure 19. Example symmetric key used in HMAC SHA-256 algorithm. [43] 31
Figure 20. JSON Web Encryption in JWE Compact Serialization format. [45] 32
Figure 21. JSON Web Encryption in JWE JSON Serialization format. [45].................. 32
Figure 22. Test pyramid consisting of the three primary testing types. [47] 36
Figure 23. Test accuracy formula. [47] .. 38
Figure 24. Code coverage formula. [47] .. 39
Figure 25. Branch coverage formula. [47] ... 39
Figure 26. Refactoring effects on code and branch coverages. [47] 40
Figure 27. Classical flow of software development. [49] .. 45
Figure 28. Test-driven development flow of software development. [49] 45
Figure 29. Overall system architecture. ... 53
Figure 30. Connection with MicroSCADA DMS600 DMS Service program. 54
Figure 31. Module desing for persistency service and database connection. 55
Figure 32. Module design of service for connecting to the Traficom REST API. 55
Figure 33. Design for coordinate transform functionality. .. 56
Figure 34. Encapsulated basic unauthorized usage of the HttpClient class. 56
Figure 35. Encapsulatede authenticated usage of the HttpClient class. 57
Figure 36. Simplified example of JSON data creation using Newtonsoft.Json

library. .. 58
Figure 37. Authorization functionality used to gain access token for Traficom

REST API. ... 59
Figure 38. Encryption functionality used to sign authentication JWT with RSA key

using RS256 algorithm. .. 59
Figure 39. Assertion for exception with MsTest default tools and with Fluent

Assertion library. .. 60
Figure 40. Test case where function is expected to throw an exception when

given erroneous input. .. 61
Figure 41. Test case where use of previous access token is ensured. 62
Figure 42. Code coverage and branch coverage generated by Fine Code

Coverage library. .. 63
Figure 43. Results from SonarQube scanning... 64
Figure 44. Full module diagram of the created program. ... 75

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface
ASCII American Standard Code for Information Interchange
CPU Central Processing Unit
DMS Distribution Management System
DSO Distributed System Operator
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edwards-curve Digital Signature Algorithm
EU European Union
HATEOAS Hypermedia as the engine of application state
HMAC Hash-Based Message Authentication Code
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IP Internet Protocol
JOSE JavaScript Object Signing & Encryption
JSON JavaScript Object Notation
JWA JSON Web Algorithms
JWE JSON Web Encryption
JWS JSON Web Signature
JWT JSON Web Token
MAC Message Authenticated Code
MIME Multipurpose Internet Mail Extensions
MVP Minimum viable product
NaN Not a Number
NIS Network Information System
QUIC Quick UDP Internet Connections
REST Representational State Transfer, Web API architecture
SCADA Supervisory Control and Data Acquisition
SHA Secure Hash Algorithm
SSL Secure Sockets Layer
SUT System Under Test
SWT Simple Web Token
TCP Transmission Control Protocol
TLS Transport Layer Security
Traficom Finnish Transportation- and Communication Agency
TSO Transmission system operator
UDP User Datagram Protocol
UI User Interface
URI Uniform Resource Identifiers, superset of URL
URL Uniform Resource Locator
URN Uniform Resource Name
UTC Coordinated Universal Time
WWW World Wide Web
W3C World Wide Web Consortium, main international standards organi-

zation for world wide web
XML Extensible Markup Language

1

1. INTRODUCTION

This research aims to create the first version of software that transfers electrical network

construction plan data from distribution system operators to a centralized information

point, enabling joint construction of electrical networks. The project involves investigating

required technologies, designing the software, and implementing it by programming and

validating it with automated testing.

This research is conducted using a constructive methodology. The main principle of it is

to solve a practical problem while producing theoretical research. Usual parts of con-

structive research are acknowledging the problem, understanding the study area, de-

signing a solution for the problem, demonstrating the feasibility of the solution, linking

the theory to the solution, and investigating the generalisability of the research. [1]

The first part of the research focuses on shareholder objectives and different motives for

this work. There are two direct shareholders: Hitachi Energy, which is providing this soft-

ware to its customers, and the customers, which are using the software to export required

data. Motives for this project stem from European Union directives, which have led to

local legislation. Other motives are Hitachi Energy’s internal; aim to expand knowledge

about web technologies and software development methodologies.

The next part of the research is about the used technologies. They are mainly dictated

by the receiving party of the data transfer, Traficom. General web data transfer technol-

ogies are investigated to provide background information on the subject. Internal sys-

tems provide their constraints for software design, but these internal technologies are

not the focus.

The implementation part of the research consists mainly of architectural design. Pro-

grammatic choices are presented when they are relevant to the research, such as parts

that correlate with the technologies investigated.

Automated software testing is one of the main points in implementing the software. Qual-

ity assurance is a necessary part of any legitimate software project. The base ground of

automated testing is researched, and a testing suite for the software is implemented.

Lastly, the project is evaluated. Technologies are discussed to the point that is possible.

Design and implementation difficulties are addressed. Next steps and follow-ups are then

recommended.

2

2. BACKGROUND AND MOTIVATION

This project has many stakeholders, each providing different perspectives and motives

for this work, the most important one for business being Hitachi Energy’s customers. The

main motive is that this project aims to upgrade their software to comply with current

standards and regulations that are set for handling construction plans and joint construc-

tion.

Hitachi Energy’s internal motives are another primary consideration. Providing software

to customers is essential, but providing secure and reliable quality software provides the

most value for customers and the company. While creating the module, this project in-

vestigates practices of creating quality software and integrates them into this project. The

knowledge gained will provide improving guidelines and practices for teams regarding

other software products and projects.

2.1 Directives, laws, and ordinances

European Parliament and the Council of European Union (EU) has signed a directive

(2014/61/EU) [2] to reduce the cost of deploying high-speed electronic communications

network. The directive is a minimum regulation, allowing countries to enact it under

stricter conditions. The directive targets teleoperators, but some articles also contain

regulations concerning other network operators, such as distribution system operators.

The directive’s description for the term ‘network operator’ contains an undertaking provid-

ing physical infrastructure for electricity (Article 2.1 point a.ii); therefore, the directive has

requirements on electricity network companies. Those articles in the directive that set

requirements for member states about electricity network companies or their information

are presented below:

1. Article 4.1 states that undertakings providing or authorized to provide communi-

cation networks have the right to request and access minimum information about

the existing physical infrastructure of any network operator. That information in-

cludes the location, route, type, current use, and contact point of that infrastruc-

ture.

2. Articles 4.2 and 4.3 state that member states can require that every public sector

body that has network operator’s information defined in Article 4.1 for its tasks

3

must make it available via a single electronic information point. When also receiv-

ing updates to that information, public sector bodies must make those available

via the same information point.

3. Article 4.4 states that if there is no single information point available for the infor-

mation described in Article 4.1, the network operators must provide this infor-

mation upon a specific request addressed to them by an undertaking providing

or authorized to provide public communications networks.

4. Article 6.1 defines the minimum information of ongoing or planned civil works

related to the network operator’s physical infrastructure that must be made avail-

able upon specific request from an undertaking providing or authorized to provide

public communications networks. This information contains, at minimum, location

and type, network elements involved, estimated start date and duration, and con-

tact point of the works. Article 6.3 states that the information above must be ac-

cessible via a single information point.

5. Article 10.4 requires that member states appoint one or more competent bodies

to perform the single information point functionalities referred to above. Article

7.1 also states that member states shall ensure that relevant information regard-

ing conditions and procedures for granting permits for civil works be available via

the information point.

Member states may fulfil these minimum requirements from the directive as they see

best suited. Finland has legislated the joint construction and joint use of network infra-

structure law, the joint construction act (276/2016) [3] based on the EU directive. Below

are listed relevant parts of the law:

1. 3 § states that the network operator must hand over the right to use its physical

infrastructure to another network operator if requested with fair and reasonable

terms. Network operators can refuse to grant the right to use the physical infra-

structure in case

a. the infrastructure is not suited for joint usage

b. network operator itself uses or will use it

c. general or national safety is compromised

d. other services in the same physical infrastructure are compromised.

4

2. 4 § states that the network operator is obligated to consent to joint construction

of physical infrastructure and electrical network when requested by another net-

work operator with a fair and reasonable request. The network operator must

agree to the request unless it

a. increases network operators' costs compared to stand-alone construction

b. concerns a minor construction project

c. compromises network safety or designated usage.

3. 5 § states that the Finnish transportation- and communication agency Traficom

must ensure that there is an easy-to-use and secure centralized information

point. Information concerning networks’ physical infrastructure, planned con-

struction works, permit procedures related to construction, and locations of ca-

bles, pipes, and comparable active network parts must be given in digital form

without undue delay. Information may not be given if it compromises networks’

information security, general or national safety, or if it contains company and

business secrets.

4. 7 § states that the network operator must give information described in point 3

above and updates concerning it to be available via the centralized information

point. The network operator must also hand over the same information directly to

another network operator if requested with fair and reasonable terms.

The Electricity Market Act (588/2013) [4] also contains regulations concerning network

operators' physical infrastructure. Relevant parts in the context of joint construction,

physical information infrastructure, and the electrical information point from the act are

listed below:

5. 110 § states that the network operator must provide, free of charge, information

about its electrical cables near a site where earthworks, waterworks, forestry, or

other work is taking place to the person preparing or performing the work. The

network operator must provide this information in digital form with other infor-

mation and instructions relevant to avoid danger. This information must be han-

dled and retained so that information security is not compromised, and only au-

thorized personnel can access it.

The Joint Construction Act also states in 13 § that Traficom may give extensive technical

regulations regarding the minimum content of information described in point 3 above,

information’s digital format, handling and transferring, and system interoperability and

5

information security. Based on the joint construction law, Traficom has given an order on

the delivery of network data and network construction plans [5].

The order from Traficom aims to ensure the accuracy and interoperability of the infor-

mation used in the centralized information point. The order addresses the information’s

digital format, minimum content, and interface system’s interoperability. The order is to

be applied only to physical infrastructure that is suited to host other network parts and to

construction plans which enable joint construction of the network. [5]

2.2 Hitachi Energy objectives

Hitachi Energy provides MicroSCADA X DMS600 distribution management system soft-

ware for network assets, controlling, and distribution management. This product is used

by distribution system operators (DSOs) worldwide to handle their electrical network

components and electricity usage. DSOs are network operators responsible for providing

and operating regional low, medium, and high-voltage electrical networks that distribute

electricity directly to customers [6].

MicroSCADA X DMS600 product consists of two main parts: DMS600 Network Editor

and DMS600 Workstation. Network Editor is a network information system (NIS) that

manages network asset data such as transformer and conductor properties, different

installation dates, component locations, and construction plans. Workstation is a distri-

bution management system (DMS) for electrical network control and management.

Where Workstation is used in real-time network operations, Network Editor is used to

design the network. These two collaborate mainly via database and some files on the

server so that they can be run alone or in parallel.

DMS600 contains information about DSO's electrical network and its components. Some

information can also be in third-party applications imported from there to the DMS600

system. Data can also be sent to other systems from DMS600 using an integrated DMS

Service platform or other separate applications connected to the DMS600 system.

The first objective for Hitachi Energy in this project is to create a solution for the DMS600

system that can send the required electrical network information to the Traficom infor-

mation point. Hitachi Energy is not directly required to do so, but providing a program-

matic and semi-automatic interface for data transfer improves the product’s functionality

and makes clients’ work more efficient and reliable. Since the data must be updated

within a reasonable time when it is changed, this becomes a repeatable action that can

be helped by automation.

6

The data sent by this module are construction plans. They are required for joint construc-

tion organized by Traficom and are managed in verkkotietopiste.fi centralized information

point. Construction plans are created and managed in DMS600 Network Editor. They

consist of modified electrical network, planning and construction dates, and other meta

information. Construction plan editing is shown in Figure 1 below.

Figure 1: Construction plan editing in DMS600 Network Editor.

In this project, the second objective for Hitachi Energy is to learn and integrate new tech-

nologies into the main product. These new technologies relate mainly to modern pro-

grammatic web interfaces and technologies used within them. By learning about these

technologies, Hitachi Energy and its employees gain information that can be used in the

future to create and use different interfaces but also to assess the quality of created or

used interfaces.

In this project, the third and final main objective for Hitachi Energy is to improve software

quality within the DMS600 product environment. By investigating and advancing, for ex-

ample, software testing methodologies, products become more reliable with less tech-

nical debt in further development and a smaller workload in customer service. This im-

proves productivity and drives the workforce to more meaningful tasks.

7

2.3 Objectives of a distribution system operator

Distribution system operators are bound by laws to give information about their physical

infrastructure as described in Section 2.1. Their main objective is to fulfil the require-

ments set by the laws.

Another main benefit of joint construction is that it can severely lower the participants'

construction costs. For example, repeated opening of road segments can be reduced

since multiple networks can be built once via joint construction. The Joint Construction

Act also states that the prerequisite for joint construction is that construction costs will

not be more than when constructing separately, so the act will not make matters worse

financially. Sharing costs will be determined equally between participants so that the

entity benefiting the most from the joint construction bears a more significant part of the

costs. Especially, small network operators might get more opportunities to its operation

from joint constructing. [7]

Finland’s Ministry of Transport and Communications conducted a study about the tech-

nical and economic effects of joint construction [8]. Part of the study was based on a

survey sent to about 40 network operators, from which about 40% answered. The most

prominent areas for joint construction and operation of electrical and communication net-

works are high voltage networks owned and operated by electrical transmission system

operators (TSO). TSOs are responsible for national or regional, often high voltage level

distribution of electricity [6]. Fingrid Oyj is Finland’s only TSO [9].

Transmission systems are the most prominent subject of joint construction because most

new constructions suited for joint construction with a communication network are done

in a high-voltage network. According to the study, construction in medium and low-volt-

age networks suitable for joint construction must be renewal construction, mainly chang-

ing overhead lines to underground cables. Since only rare occasions of renewal work in

medium and high-voltage networks generate purposeful entities for building communi-

cation networks, the most suitable areas for joint construction in the middle and low-

voltage networks are in the construction of urban areas and some renewals of entire 20

kV lines in sparsely populated areas. [8]

Challenges for joint construction arise from the differences in the schedules of electricity

and telecommunication network projects and the lifetimes of the networks. Generally,

electrical network planning is more long-term than telecommunication network planning.

Planning and construction of the telecommunication network are guided by changes in

the subscriber network and not in the backbone network. [10]

8

Transport and Communications Committee states in its report (LiVM 3/2016 [7]) regard-

ing the government proposal (HE 116/2015 [10]) that the centralized information point

will allow location data of physical infrastructure to be used in the development of oper-

ational reliability. It can also be used to prevent unintentional damage occurring in con-

nection with the construction of networks. This will reduce indirect costs of network op-

eration. [7]

On the other hand, the Committee states that the centralised information point makes

the data more vulnerable to criminal or security-compromising activity. Therefore, tech-

nical implementation, data disclosure, and other data utilisation must be planned and

implemented to meet high data security requirements, increasing the costs of the infor-

mation point. The Committee also states that there will be costs for network operators

from delivery and maintenance of data into the centralised data point. [7]

2.4 Existing centralized electrical network data systems

In Finland, Traficom has become responsible for the centralized electrical information

point. It has two separate services: verkkotietopiste.fi for network areas and plans, and

sijaintitetopiste.fi for physical network infrastructure. Both offer a graphical interface and

a programmatic interface, although the programmatic interface for sijaintitietopiste.fi is

estimated to be working starting in the second quarter of 2024.

Few operators were providing centralized network information services in Finland before

Traficom. These were Keypro Oy, Johtotieto Oy, and the Association of Finnish Local

and Regional Authorities (Kuntaliitto) in cooperation with some municipalities and cities.

Some of these provided services were self-usable electronic information points, and

some were supervised and controlled services. [10]

Similar laws regarding joint construction have been in force at least in Germany, France,

Sweden, Denmark, Norway, the United States of America, and South Korea. Centralized

information points are in use, at least in Germany, France, Sweden, and Denmark, but

only some are electrical, and only some are required to be used by law. This means that

the EU directive of joint construction will create or advance the legalization and imple-

mentation of joint construction and centralized information points in most of Europe. [10]

9

3. WEB TECHNOLOGIES

World Wide Web Consortium (W3C), which is the leading international standards organ-

ization for the World Wide Web (WWW, or simply Web), describes the Web to be an

information space in which items, referred to as resources, are identified by global iden-

tifiers called Uniform Resource Identifiers (URI) [11]. On the other hand, the Internet is a

global system of interconnected computer networks that interchange data by packet

switching using a standardized Internet Protocol Suite [12]. Thus, the Web is an infor-

mation space or collection of resources which can be accessed via the Internet.

For these resources on the Web to be available and usable, many technologies must be

used. Three core technologies that make it are URIs, HyperText Transfer Protocol

(HTTP), and HyperText Mark-up Language (HTML). Tim Berners-Lee invented these

and their first use case was the sixth of August in 1991 on the Web’s first page, created

by Berners-Lee. [13]

3.1 URI

Uniform Resource Identifiers (URIs) provide a way to identify a resource in the WWW.

Each specific URI points to only one resource. The specification does not define re-

sources identified by URIs, so they can be anything: an electronic document, a service,

a collection of resources, or a bound book in a library, for example. [14]

URIs can be classified further as locators, names, or both. Uniform Resource Locators

(URLs) are a subset of URIs that identify the resource and describe its primary access

mechanism and way of locating it. Uniform Resource Names (URNs) have historically

been used to identify resources under the “urn” scheme. General URIs can be divided

into five hierarchical sections, as shown in Figure 2. The significance of the sections

decreases from left to right. These five sections are scheme, authority, path, query, and

fragment. Only the scheme and path parts are mandatory, but the path can be empty.

[14]

Figure 2. general URI’s hierarchical sections. [14]

10

The scheme is the first part of URI. It refers to the specification that the scheme and URIs

within it use. URI general syntax is extensible by the schemes, making generic syntax a

superset of syntax in all current and future schemes. A few well-known schemes are

“http”, “ftp”, “file”, and “mailto”. [14]

The authority part defines governing authority for the rest of the namespace defined by

the remainder of the URI. The authority part consists of the registered name or server

address distinguishing the author, optional user information, and port parts. The authority

section starts with a double slash (“//”) and ends with either a single slash (“/”), the num-

ber sign (“#”), or a question mark (“?”). Figure 3 shows this format for the authority sec-

tion. [14]

Figure 3. Authority section in general URI syntax. [14]

The user info part of the authority section may contain a username and optionally

schema-specific details concerning authorization to the resource. The often-used format

“username:password” for user info is deprecated, and it should not be used since it pre-

sents the password in clear text. This is a security risk, and any text after the colon (“:”),

in other words, the password part, should be rejected and not be used, at least in an

unencrypted way. [14]

The host part in the authority section is used to identify the authority. It can be an Internet

Protocol (IP) address literal encapsulated within square brackets, an IPv4 address in

dotted-decimal format, or a registered name. Although a URI contains specific authority,

it does not mean the used scheme requires access to the given host. Host names are

often reused to avoid the creation and registration process of new ones. [14]

The Port part of the authority section is an optional definition for the port number to be

used. It follows the host part in URI, separated from it with a single colon (“:”). Schemes

can address default ports. For example, “http” scheme uses port number 80, and “https”

scheme uses port number 443. If the URI’s port number is the same as the scheme’s

default port number, it should be omitted from the URI. [14]

The third section of URI, path, is used along the query part to identify a resource within

the scheme and possible naming authority. The path part consists of a sequence of path

segments in hierarchical order, separated from each other by a single slash (“/”). The

path can also be empty. The path starts with a single slash (“/”), which separates it from

the possible authority part of the URI. Some path segments are intended to be used for

11

specific cases. For example, so-called dot-segments “.” and “..” are used for relative ref-

erence at the beginning of a relative path. [14]

The query section of a URI contains non-hierarchical information. It is used along with

the path section to identify a resource within the scheme and authority of a URI. Often

used format for query information is “key=value” pairs separated by ampersand (“&”)

from each other. The query part starts with a question mark (“?”) and ends with a number

sign (“#”) or at the end of the URI. [14]

The fragment section of a URI is used to give additional information to identify secondary

resources by referencing the primary resource. The secondary resource might be some

section or portion of the primary resource or a representational view of the primary re-

source. The fragment section starts with a number symbol (“#”) and is terminated by the

end of the URI. [14]

3.2 HTTP

HyperText Transfer Protocol (HTTP) is a request/response-based application-level pro-

tocol in the Internet Protocol suite model. It is used in collaborative, distributed, hyper-

media information systems to transfer data between different WWW services using

TCP/IP connections. A Scheme specification called “http” is used in HTTP URLs, which

syntax is shown in Figure 4, with the default port number being 80. HTTP protocol is

stateless and object-oriented, and it allows for systems to be built independently regard-

less of the data being transformed. [15]

Figure 4. URL format in HTTP/1.1 scheme. [16]

The first version of the HTTP protocol, known as HTTP/0.9, was defined in 1991 by Tim

Berners-Lee. It is simple and does not transfer client information with the query. Re-

quests in HTTP/0.9 consist of the word “GET” and the resource’s URI address. Re-

sponse to the GET request is a message, a byte stream of American Standard Code for

Information Interchange (ASCII) characters in HTML format. [17], [18]

HTTP/1.0 specification was defined in 1996. Practical information-based systems require

more functionality than just retrieval of data with GET requests. Methods defined in

HTTP/1.0 are GET, HEAD, and POST. Messages are passed in a similar format as In-

ternet mail and Multipurpose Internet Mail Extensions (MIME). Complete requests con-

sist of a request line, headers, and entity body. Complete responses consist of status-

line, headers, and entity body. HTTP/0.9 one-line syntax is also allowed. Headers allow

12

metadata to be transferred in both requests and responses. HTTP/1.0 also allows for

different content types other than HTML with the use of a Content-Type header. [15],

[17]

HTTP/1.1 was defined in 1997 and updated with improvements in 1999, 2014, and 2022.

HTTP/1.0 was still insufficient in functionalities that practical information systems require.

HTTP/1.0 did not take into consideration caching, virtual hosts, hierarchical proxies, and

the need for persistent connections between clients and servers. In HTTP/1.0, each re-

quest-response pair requires a new connection, but HTTP/1.1 allows the same connec-

tion to be used for multiple request-response exchanges. HTTP/1.1 also defines pipe-

lined connections, allowing new requests to be sent on the same connection before re-

ceiving previous responses. Even though HTTP/1.1 allows request pipelining, it still suf-

fered from application-layer head-of-line blocking, not allowing total concurrency. Meth-

ods defined in HTTP/1.1 are GET, HEAD, POST, PUT, DELETE, TRACE and OP-

TIONS. [17], [19]

HTTP/2 protocol was standardized in 2015. Web pages became increasingly complex,

leading to more data being transmitted over more HTTP requests. This caused overhead

for HTTP/1.1 connections. HTTP/2 supports the same core features as HTTP/1.1, but its

purpose is to be more efficient. HTTP/2 is a binary, multiplexed protocol, allowing for

parallel requests over the same connection and better optimization techniques. Headers

are often verbose and similar between requests, so by compressing them, HTTP/2 re-

moves overhead and duplication of transmitted data. HTTP/2 also allows the so-called

server push mechanism, allowing servers to use client caches for data. [17], [20]

HTTP/3 is the newest version of HTTP. It was first defined in 2016 with the name

“HTTP/2 Semantics Using the QUIC Transport Protocol”, later renamed “HTTP-over-

QUIC”. It was renamed by the IETF in 2018 as HTTP/3. It has the same semantics as

HTTP/2 but uses Quick UDP Internet Connections (QUIC) instead of TCP/IP for the

transport layer. This allows for lower latency on HTTP connections. HTTP/2 runs on one

TCP connection, so it is possible that all streams are blocked by packet loss detection

and retransmission. QUIC uses multiple streams over User Datagram Protocol (UDP),

and each stream has independent packet loss detection and retransmission, so in error

cases, only one of the streams is blocked. [17], [21]

Hypertext Transfer Protocol Secure (HTTPS) is an encrypted version of HTTP. It uses

Secure Socket Layer (SSL) or its successor Transport Layer Security (TLS) for bidirec-

13

tionally encrypted communication between client and server. HTTPS has the same se-

mantics as HTTP, with minor differences in URIs. HTTPS uses “https” scheme instead

of “http” and the default port number is 443. [22]

HTTP/0.9 has been deprecated since 2014 on servers that support HTTP/1.1 [23]. Use

of HTTP/1.0 should be minimal because of the newer HTTP/1.1 version. A growing num-

ber of servers are adapting to HTTP/2 and HTTP/3 protocols. HTTP/2 is used on 35.5%

of the top the ten million web pages and HTTP/3 on 27.0%. HTTPS protocol is used as

a default on 84.5% of those ten million web pages. These percentages are from Novem-

ber 2023. [24]

Methods are a central part of HTTP protocol. They are used to define the action type of

a request. Methods can optionally be safe and/or idempotent. A safe method should not

have any action other than data retrieval. GET and HEAD methods are, by definition,

considered safe. Idempotent methods have the feature that multiple identical requests

have the same side effects as a single request would have. In other words, re-execution

of idempotent methods should not change the result. GET, HEAD, PUT, DELETE, OP-

TIONS, and TRACE are idempotent by definition. However, it is important to note that

even if specification defines these methods as safe or idempotent, implementation of a

service might still have errors leading to side effects or unwanted behaviour. [16]

HTTP protocol defines a common set of methods, which can be extended with custom

methods defined separately by clients and servers. HTTP/1.1 specification contains all

currently defined methods: [16]

- The OPTIONS method is used to request information about communication op-

tions. It allows the client to know options and requirements related to the resource

or capabilities of the server without action or retrieval of the resource.

- The GET method retrieves the resource pointed by request URI. The get method

can be conditional, depending on whether any of the “Modified-Since”, “If-Un-

modified-Since”, “If-Match”, “If-None-Match”, or “If-Range” header fields have

been included in the request. GET method can also be partial if the “Range”

header field is included.

- The HEAD method retrieves metainformation about the resource defined in the

request URI. The response should be identical to GET except that HEAD does

not return message-body. This reduces network usage if the only relevant infor-

mation about the resource is the meta information.

- The POST method requests the server to accept an entity in the request as a

new subordinate of the resource in the request URI. This means that either a new

14

entity is created into resource collection identified by the request URI, or a re-

source identified by the URI is updated. The request URI should point to an ex-

isting resource, and the server decides how the request is handled, usually de-

pending on the request URI.

- The PUT method requests a new resource to be stored in the request URI. The

new resource is provided as an enclosed request entity. If the resource pointed

out by the request URI already exists, the new entity should be considered as a

new version of it. This means that the PUT method should either create an en-

tirely new resource to the URI or replace the resource in the URI.

- The PATCH method is not part of the original HTTP/1.1 specification. It was de-

fined in 2010 in a separate specification, but it has become an important part of

used HTTP methods. It is used to partially update resources defined in the re-

quest URI based on a set of changes described in the request entity. If the re-

source pointed by the request URI is non-existent, the server may create a new

resource to that location if it is logically possible upon the given patch entity. [25]

- The DELETE method deletes resources defined by the request URI. The action

may be overridden by human intervention or by other means. The client cannot

be sure that the action is carried out even if the response's status is successful.

The server should not return successful status unless at the time it intends to

delete or move the resource to an inaccessible location. No extra action should

happen if the resource defined in the request URI is non-existent.

- The TRACE method performs a message loop-back along the path to the desig-

nated resource. The final recipient of the request should reflect the message to

the client. This can be used for debugging to determine what the end participant

receives. TRACE method should not have an entity in the request body.

- The CONNECT method establishes a tunnel to a destination defined by the re-

quest URI. After a successful connection, the server restricts the tunnel's behav-

iour to forwarding data bidirectionally until the tunnel is closed. Tunnels are often

used to create end-to-end virtual connections through proxies. [19]

POST, PUT, and PATCH methods are similar but have fundamental differences regard-

ing different meanings of request URI and actions depending on it. In the POST method,

the URI identifies the resource responsible for handling the entity in the request. In con-

trast, in the PUT method, the URI identifies the resource that is the request entity. PATCH

is similar to PUT but contains only changes regarding the resource in the entity of the

15

request. Most importantly, PUT is idempotent; POST and PATCH are not. Using the PUT

method provides improved reliability and reduces side effects. [16]

HTTP status codes are another central part of HTTP communication. Status codes are

three-digit numbers that are part of the response message. They describe the result of

the request and the semantics concerning the response. Status codes are divided into

five classes that categorize responses by the first number. Two latter numbers do not

have any categorization meaning. Valid status codes are within the range of 100 to 599,

although the client and server can extend them. Status code classes are presented be-

low: [19]

- 1xx (Informational) status codes provide an interim status for communication

connection or request processing before completing the requested action and

sending a final response to the client.

- 2xx (Successful) status codes indicate that the request was received, under-

stood, accepted, and handled.

- 3xx (Redirection) status codes indicate that further actions are required to be

taken by the user agent to fulfil the request. An example reason for redirection

status is that the resource might be moved to a different URI. Redirections may

lead to a cyclical path, which the client is required to detect and intervene.

- 4xx (Client Error) status codes indicate that the client sending the request has

made an error. The response should contain an explanation of the error situation.

- 5xx (Server Error) status codes indicate that it is aware that an error has oc-

curred or is incapable of performing the requested action. The response should

contain an explanation of the error situation.

Each class of status codes contains more specific codes defined by the latter two num-

bers. Detailed status code gives exact reasoning for a response, even without a re-

sponse message.

3.3 Application programming interfaces

The most central web architecture concept regarding this work is the application pro-

gramming interface (API). They are a way to create machines that communicate with

each other using HTTP. Data sent and read by these machines must also be encrypted

so that no malicious entities can access sensitive data by hijacking the data traffic be-

tween services. Different cryptographic technologies are a way to achieve this. APIs and

16

their data must be available for use by the correct entities, and here, different authenti-

cation and authorization technologies are used. Authentication is used to determine who

the user is and if they have access right in the first place, and authorization determines

what parts of data provided by the API they have access to [26].

The Web provides a way to view its resources or data via services: search engines,

weblogs, online stores, and much more. These services can be accessed, used, and

viewed through a web browser on an end device, client, so that the data is presented in

a human-readable way through a User Interface (UI). This human-readable data is pre-

sented by Hypertext Markup Language (HTML) pages. [27]

In the same manner, different programs and services can access these data services

and use the data provided by them. This part of the Web is called programmable Web.

The difference between these is that in the latter, data is in raw format, meant to be read

by programs and not humans. Programmable Web presents data mainly in Extensible

Markup Language (XML) -format, but other formats such as JavaScript Object Notation

(JSON), plain text, and binary documents are also being used. [27]

Different web services communicate via application programming interfaces or shortly

APIs. APIs work as interfaces connecting other web components to their services by

handling requests and responses, as shown in Figure 5. [13]

Figure 5. Web API within client-server interaction. [13]

API architectures have properties that are used to differentiate, classify, and evaluate

them. There are numerous amounts of these properties, but some commonly used when

it comes to network-based applications are performance, scalability, simplicity, modifia-

bility, visibility, portability, and reliability. [28]

Architectural style can significantly affect performance since component interactions can

be a dominant factor in efficiency. However, applications cannot avoid basic costs in

achieving application functionality. For example, if the same data is handled in different

systems, the application cannot avoid transferring the data between them. [28]

Performance can be further divided into two categories: network performance and user-

perceived performance. Network performance is measured by communication attributes:

17

throughput, overhead and bandwidth. Application architectures have an impact on net-

work performance by the number of interactions required per user action and the granu-

larity of the data transmitted. [28]

On the other hand, user-perceived performance is measured by the impact that actions

have on the person using the application. It is primarily measured by latency and action

completion time. Architecture styles often affect these, but most importantly, they impact

each other. Latency optimization often has side effects that reduce completion time or

vice versa. Therefore, trade-offs are required when considering architectural design. [28]

Scalability means architecture's ability to handle many components and interactions be-

tween them. It is also impacted by the frequency of interactions, how evenly they are

distributed over time and the requests' handling. Scalability can be improved by decen-

tralizing interactions to many components, simplifying the components, monitoring the

system, and controlling interactions upon that. [28]

Simplicity measures the complexity, understandability, and verifiability of a system. The

main principle for architectural styles to improve simplicity is the separation of concerns.

It allows for functionality allocation within components. When individual components and

functionality allocations can be made smaller, components will be easier to understand

and implement, improving simplicity. The principle of generality applied to architectural

components also enhances simplicity by decreasing variation in the architecture. [28]

Modifiability is one of the critical properties in network-based architectures, more im-

portantly, dynamic modifiability, where changes and updates are made to applications

without stopping the entire system. Modifiability is the easiness with which developers

can make changes to the application. In an ideal utopia, created applications match the

requirements perfectly, but even then, the software needs to be modified when require-

ments change. In network-based systems, components are often distributed, requiring

fragmented and gradual changes, after which old and new implementations must work

in coexistence. Overall modifiability can be divided into reusability, configurability, cus-

tomizability, extensibility, and evolvability. [28]

Evolvability measures how much the implementation of the component can be changed

without negatively impacting other components. Static evolution depends on how well

application implementation enforces architectural abstraction, but dynamic evolution can

be influenced by architecture style through maintenance constraints and application

state location. [28]

18

Extensibility is the ability to add new functionality to the existing application system, with

dynamic extensibility meaning adding functionalities to already deployed systems. Appli-

cation architecture style can improve extensibility by reducing coupling between different

components. [28]

Customizability means the architectural element’s ability to temporarily specialize its be-

haviour and service for a single client component without impacting other client compo-

nents. Architectural styles that support customization can help with scalability and sim-

plicity. Service components must implement the most frequently used functionalities di-

rectly, and the client will define special services. [28]

Configurability means post-deployment modification of application components or their

configuration. It allows the use of new services or data types, for example. Configurability

is related to extensibility and reusability. [28]

Reusability means that some components, data elements, or connectors can be used in

other applications as they are without modification. It is often achieved in architectural

styles by reducing coupling between components. [28]

Visibility, in the case of network-based applications, is the ability of a component to me-

diate or monitor the interaction of two different components. Visibility can improve sys-

tem's performance, scalability, reliability, and security. Architectural styles may influence

visibility by restricting interfaces or allowing for monitoring. [28]

Portability is the ability of software to be run in a different environment. Architectural

styles that move the code with data being processed often induce portability. [28]

Reliability, when considering architectural styles, is the ability of architecture to withstand

partial failures on components, data, or connectors without leading to failure at the sys-

tem level. Architectural styles can improve reliability by reducing the scope of failure,

allowing monitoring, avoiding singular failure points, and enabling redundancy. [28]

3.4 Representational state transfer

In late 1993, the usage of the Web began to expand from scientists and researchers to

regular people, and commercial use gained more interest. The rapid growth of Web's

usage combined with poor characteristics of early HTTP and limitations in deployed ar-

chitecture would outgrow the Internet's capacity. There was a need to design an archi-

tecture style that would be built on existing Web protocols and would allow the Web to

grow. Roy Fielding designed the Representational State Transfer (REST) architectural

style to fulfil that. [28]

19

Roy Fielding defined the Representational State Transfer, shortly REST or RESTful, in

his dissertation “Architectural Styles and the Design of Network-based Software Archi-

tectures” in 2000 at the University of California, Irvine [28]. REST is not a web technology

but rather an architectural style describing principles and constraints to define an ideal

model of interactions within the Web. It attempts to maximize components' independence

and scalability while minimizing latency and network communication. REST is defined

initially as a set of coordinated architectural constraints.

The first constraint of REST architecture is a client-server constraint that is based on the

separation of concerns principle. It means that user interfaces are separated from data

storages. This separation allows for improved portability of user interface between differ-

ent platforms and better scalability of servers because of simplified structures. It also

allows for Web components to be evolved separately. Figure 6 shows web architecture

with the first constraint used. [28]

Figure 6. Client-server system. [28]

The second constraint for REST is having stateless interaction between the client and

server. Each request must contain all necessary information for the server to understand

it. This improves the reliability, visibility, and scalability of the architectural style. It is

easier for the system to recover from partial failures, which improves reliability. It en-

hances visibility because possible monitoring mediators do not need to know anything

before the request is monitored to understand it fully. Statelessness also improves scala-

bility since servers do not have to manage resources across multiple requests, which

makes the system simpler. As a trade-off, the stateless constraint might reduce perfor-

mance since repetitive data has to be sent to the server, resulting in per-interaction over-

head. Figure 7 shows web architecture with the first two constraints in use. [28]

20

Figure 7. Stateless client-server system. [28]

The cache is the third constraint of the REST architecture. It adds the possibility of cache

storages that can reuse earlier response data for a new request equivalent to the earlier

one, resulting in a speedup response. Response data must be labelled as either cache-

able or non-cacheable. Caching possibly improves scalability and performance since it

can reduce the average latency of a series of interactions and partially or completely

eliminate some interactions. As a trade-off, it can reduce reliability since the data might

be different already on the server compared to the cache. Figure 8 shows web architec-

ture with the first three constraints in use. [28]

Figure 8. Stateless client-cache-server system. [28]

The fourth constraint of REST architecture is a uniform interface, in which different data

services' interfaces are uniformly designed. This behaviour distinguishes REST from

other architectural styles. The generality principle applied to component interfaces im-

proves the visibility of interactions and simplifies overall system architecture. The uniform

design also means that implementations are separate from the services they provide,

improving evolvability. The trade-off with uniform interfaces is that they reduce efficiency

because standardized data form is used rather than application specific. REST is de-

signed to be optimized for common Web cases, being large-grain hypermedia transfers.

Figure 9 shows web architecture with the first four constraints in use. [28]

21

Figure 9. Stateless and uniform client-cache-server system. [28]

The fifth constraint of REST further fulfils requirements for Internet-scale architec-

ture. Layered system constraint allows the system to be created from multiple hierar-

chical layers, from which each component cannot see further than the immediate layer

they are interacting. This layering reduces overall system complexity and improves

scalability through intermediary components that handle infrequently used functionali-

ties. Layered systems, on the other hand, increase the latency and overhead of data

processing. This can be countered in network-based systems with shared cache inter-

mediates. At organizational domain boundaries, they can provide improved performance

and security. Figure 10 shows web architecture with the first five constraints in use. [28]

Figure 10. Layered, stateless, and uniform client-cache-server system. [28]

The sixth and final constraint of REST is code-on-demand. It allows clients to download

scripts and applets, extending their functionality. It improves the extensibility and sim-

plicity of clients but reduces overall visibility. Therefore, it is the only optional constraint

of REST architecture. Optionality allows, for example, code-on-demand to be used only

within an organizational domain, and a general case would still have the desired behav-

iour. This way, the benefits and disadvantages of code-on-demand can be restricted to

22

a known realm in the overall system. Figure 11 shows RESTful web architecture with all

of its constraints. [28]

Figure 11. Layered, stateless, and uniform client-cache-server system with code-
on-demand. Full REST architecture style. [28]

The fourth constraint, the uniform identifier constraint, consists of four sub-constraints

[28]. The first one is the identification of resources, which states that each web-based

resource can be addressed by a unique identifier, for example, URI. [13]

The second sub-constraint is named manipulation of resources through representa-

tion, meaning a resource can be represented differently depending on the client. Users

can view a resource on a browser as an HTML page, and the same resource can be a

JSON object in programmatic interaction. The main idea is that representation creates a

way to interact with the resource but is not the resource itself. [13]

The third of the sub-constraints is self-descriptive messages. It states that the interaction

messages, requests, and responses must contain all the necessary information. A client

can represent the desired state of resources in request, and the server can represent

the current state of resources in response. Additional metadata regarding resources can

be transferred inside message headers. [13]

The fourth sub-constraint is hypermedia as the engine of application state (HATEOAS),

which states that a resource’s representation includes links to related resources. It

means that all subsequent requests that may be made are discovered within the re-

sponse containing links. [13]

REST APIs represent their resources with URIs. Communication messages are sent in

HTTP format. Most modern-day programmatic APIs use XML or JSON as a data repre-

sentation format. Loads of design rules further address how REST APIs should work and

represent their data, but those are out of the scope of this research. [13]

23

3.5 Authentication and authorization

Authentication is a process to recognize the user or client of an API. Its target is to dis-

cover the client's identity so that only legitimate and intended parties can access the

data. Authentication can be done in multiple ways such as certificates, once retrieved

API keys or user credentials and therefor it affects API design greatly. [29]

Authorization is a process to determine which data entities the recognized client has

been granted access to, if any. If the client is not authenticated, no authorization can

happen since the client is unknown to the API and access to the data is declined. Au-

thorization is not necessary if there are no different levels of access for users, for exam-

ple, visitor and admin data routes. [29]

Authorization can be implemented as pre-emptive or just-in-time. Pre-emptive authori-

zation grants access to all required APIs during authentication, and that access grant,

such as a token, is then used with all APIs. Pre-emptive authorization imposes a privacy

issue that APIs can possibly see access grants related to other APIs. Just-in-time au-

thorization combats this by granting access to each API individually when required. Just-

in-time authorization encloses privileges to be viewed by relevant APIs only, but this

could create loads of noise, decreasing performance if there are many APIs in use. [29]

There are many authentication methods available to choose from, and they influence

API interface, implementation, overall performance, privacy statements, and environ-

ment infrastructure. Therefore, it is essential to analyse different authentication methods

while designing the API interface since the chosen method needs to be respected in API

interface design. [29]

Some most used authentication and authorization methods are:

1. API Key. It is a unique identifier to authenticate the client. They are typically used

to identify a project within the API rather than a human user. [30]

2. Bearer token. It is an opaque string without meaningful information to its user,

the client. Used tokens can be unstructured, such as hexadecimal characters, or

structured, such as JSON web tokens. [30]

3. Basic auth and Digest auth. They work based on username and password in-

formation. The difference is that basic auth sends username and password joined

by a single colon together encoded with base64 encoding, whereas digest au-

thentication applies a hashing function to the authentication information before

sending it to the API. [30]

24

4. OAuth. OAuth 1.0 and OAuth 2.0 are industry standard protocols for authoriza-

tion developed by the Internet Engineering Task Force (IETF) OAuth Working

Group. They provide a way for applications to access protected data from API

without the need for users to disclose their credentials to the consumer service.

[30]

5. Certificates. Certificates are digitally signed records that attest to the truth of

something or ownership of something. Certificates can be used to secure ser-

vices and APIs. [31]

Many more technologies are available for securing APIs and their data, such as OWASP,

OpenID, and Tupas. This work is going to concentrate on the most relevant authentica-

tion technology considering this project: Bearer token with JSON Web Tokens.

3.6 Web Tokens

Web tokens are a way to provide authentication and optionally authorization to a private

resource on the Web. A token is a piece of data that has no use or meaning on its own,

but combined with some tokenization system, they provide a secure way to authorize the

user requesting access. [32]

Web tokens are not dependent on the system they are used upon. They can be used in

request headers, GET or POST requests, or sessions. It also allows separate servers or

third-party services to handle token signing and verification, providing versatility and

scalability to the system. Tokens do not require a username and password, which re-

moves crucial security risks. They may be granted for only a period, which helps manage

resource access. Tokens are also stateless, which provides scalability. User roles and

permissions can be transmitted within the token payload, so they can also handle au-

thorization. [32], [33]

3.6.1 Simple Web Token

Simple Web Tokens (SWT) are the most rudimentary web token format. For example,

they are designed to transmit simple assertions formatted and compact, added to the

HTTP header. The assertion can be represented as name-value data pairs. The only

mandatory name-value pair is “HMACSHA256”, which must be the base64 encoded SHA

256 HMAC value of other pairs in the SWT. This verification value prevents the SWT

from being tampered with by third parties since the private key used in the SHA 256

HMAC process is agreed upon and known only between data-exchanging parties. Other

25

name-value pairs have also been defined, and whilst not being mandatory, they have

proven their utility in a variety of assertion frameworks. [34]

1. Issuer identifies the party that issued the SWT.

2. ExpiresOn defines the moment when the SWT is not accepted anymore. This

timestamp is recorded as the number of seconds passed 1970-01-01T0:0:0Z

(Midnight 1.1.1970) in Coordinated Universal Time (UTC), also called the Unix

time [35], [36].

3. Audience identifies the SWT's intended audience. The intent is that if a con-

sumer receives a SWT that has a different audience than expected, the consumer

will reject the SWT.

3.6.2 JavaScript Object Notation

JavaScript Object Notation (JSON) is a textual syntax representing structured data used

to interchange between programs. It uses braces, brackets, colons, and commas to

structure representable data into JavaScript’s object-like entities. It uses a uniform char-

acter set for all its data. JSON syntax is not a complete specification of data interchange,

and meaningful communication between producer and consumer requires further agree-

ment on semantics regarding the particular use of JSON. Therefore, JSON can be

viewed as a framework on which such semantics can be built upon. [37]

JSON provides notation for seven types of values, which are shown in Figure 12: object,

array, string, number, true, false, and null. The first two of these are collections of more

values. The rest are singular values, with the last three being absolute values, meaning

they cannot be anything else. A string is a sequence of Unicode characters wrapped

inside quotation marks. A number is defined as a sequence of decimal digits without

leading zeros in the base 10 system. The possible fractional part is separated using the

decimal point. [37]

Figure 12. JSON values [37]

26

Objects are represented by curly brackets with zero or more name-value pairs inside,

separated by commas. The name of a pair is separated from the corresponding value by

a colon. All names must be strings, but there are no other restrictions on names. They

do not need to be unique, and they do not have significance in ordering pairs. Values

can be any of the ones belonging to JSON syntax. The whole format of JSON objects is

shown in Figure 13 below.

Figure 13. JSON object format [37]

Array structure represents a list of values, which can be any belonging to the JSON

syntax. An array is defined by square brackets surrounding zero or more values. The

values are separated from each other using single commas. The JSON syntax does not

define any meaning regarding the order of values in the array, but arrays are often used

in situations where there is some semantics on the ordering. Full presentation about the

array format is in Figure 14 below. [37]

Figure 14. JSON array format [37]

Complete JSON structures can present any data object. They are simple in format, which

means they are easy to understand and handle.

3.6.3 JSON Web Token

Encoded JSON syntax structures are used as the basis for JSON Web Tokens (JWT),

which are compact, URL-safe ways of representing claims transferred between two com-

municating parties. JWT headers describe cryptographic operations that have been used

on JWT claims. A complete JWT is represented by base64url encoded values that are

separated using period characters. A JWT may be enclosed to another JWT-based struc-

ture to create a nested JWT. This structuring enables nested signing and encryption to

be used. [38]

Claims are pieces of information represented in name-value pairs. The claim's name is

always a string, and the value is an arbitrary JSON syntax type value. Claim names

27

within the same JWT must be unique. No claim is strictly required for JWT to be valid by

official specification, so requirements are application and context dependent. Claim

names are grouped into three classes: registered, public, and private claim names. [38]

Internet Assigned Numbers Authority (IANA) JSON Web Token Claims registry defines

and maintains registered claim names and their definitions. All claim names are short

because JWTs are designed to be compact. The registered claims are: [38]

- “iss” (Issuer) claim is identification for the issuer of the JWT. The value of this

claim is a case-sensitive string.

- “sub” (Subject) claim identifies the subject of the JWT. Claims in a JWT are typ-

ically statements about the subject. The value of this claim is a case-sensitive

string.

- “aud” (Audience) claim identifies the intended recipient of the JWT. If the princi-

pal processing the JWT does not identify itself from the audience claim, it must

reject the JWT. The value is an array of case-sensitive strings or, in the case of

the JWT having only one audience, a case-sensitive string.

- “exp” (Expiration time) claim states the expiration time for the JWT, after which

the JWT must not be accepted. Implementations may use some leeway with the

expiration time to account for clock skew. The value must be a number in Unix

time.

- “nbf” (Not before) defines the time before the JWT must not be accepted. The

implementation may use some leeway. The value must be a number in Unix time.

- “iat” (Issued at) states the timestamp when the JWT was issued. It can be used

to calculate the age of the JWT. The value must be a number in Unix time.

- “jti” (JWT Identifier) provides a unique identifier that can be used to prevent the

same JWT from being used repeatedly. The value must provide a negligible prob-

ability that the same value cannot accidentally be used on another JWT. The

format of the value is a case-sensitive string.

The users of JWTs can define public claim names. New claim names should be regis-

tered in the IANA JSON Web Token registry or have a value containing collision-resistant

names. Either way, the definer of the claim needs to take precautions so that they are in

control of the namespace they use for defined claim names. [38]

The producer and consumer of a JWT agree upon private claim names. These claim

names are not part of the claim name registry or public claim names. These claim names

28

should be used with caution since they are subject to collisions, unlike registered and

public names. [38]

JavaScript Object Signing & Encryption (JOSE) is a framework that provides a collection

of standardized methods for securing JWTs and their claim sets. JWTs can be repre-

sented as JSON Web Encryption (JWE) by digitally signing them or JSON Web Signa-

ture (JWS) objects by encrypting them. All operations related to these also expect JSON

Web Key (JWK), a cryptographic key in JSON data structure, to be used with them rather

than random parameters. [39]

JWTs contain JOSE headers that describe cryptographic operations applied to the JWT

and optional additional information. Header data consists of name-value pairs separated

by commas from each other. A single colon separates the name from the value. Headers

are encoded with base64url. JOSE headers depend on if the JWT is presented as JWS

or JWE. [38]

3.6.4 JSON Web Algorithms

JSON Web Algorithms (JWA) are cryptographic algorithms used with JSON Web Signa-

tures, Encryptions and Keys. The algorithms considered here are all used with JSON

Web Signatures since only they are relevant to this work. [40]

Signing algorithms consist of two defining parts: algorithm function and hashing function.

These both can be seen in algorithm short names. For example, RS256 is an RSASSA-

PKCS1-v1_5 algorithm with SHA-256 hashing function. [41]

The used hashing function determines the length of the resulting hash. Commonly used

functions are SHA-256, SHA-384 and SHA-512, which all are part of hashing algorithm

family SHA-2. The level of security that each of them provides is half of the hash’s length;

for example, SHA-256 provides 128 bits of security, and SHA-512 provides 256 bits of

security. SHA-512 is more secure than SHA-256, but also SHA-256 is currently unbreak-

able. [41]

The Hash-based Message Authentication Code (HMAC) is the most basic algorithm

function. HMAC is a symmetric function, meaning tokens are issued and validated with

the same cryptographic key. It is also deterministic, meaning that the same JWT header

and payload will generate the same signature. Symmetric algorithms are not suitable for

multi-party web communication. HMAC algorithms are shortened as HS; for example,

HMAC with SHA-256 is HS256. [40], [41]

The generally used JWT signing algorithm is RSASSA-PKCS1-v1_5, shortened as RS.

It is an asymmetric and deterministic algorithm based on RSA. While it is still safe for

29

encryption, weaknesses in its signature validation have been found, meaning that it is

prone to attacks if implemented falsely. In JWA specification, the implementation require-

ment for the RS256 algorithm is “recommended”. [40], [41]

Compared to RSASSA-PKCS1-v1_5, a similar RSA-based algorithm RSASSA-PSS

(shortened as PS) is recommended over it to get increased robustness against the pos-

sible attacks [42]. It is asymmetric and probabilistic, meaning that the same header and

payload will generate different signatures each time. It is also probabilistic in a good way

since randomness used in signing is not critical for security. This makes the algorithm

more straightforward to implement successfully. JWA specification sets implementation

requirement for PS256 as “optional”. [40], [41]

Compared with RSA algorithms, Elliptic Curve Digital Signing Algorithms (ECDSA, short-

ened as ES) perform better in security but are more complex to implement. They are

faster at signature generation than RSA algorithms but are usually slower in signature

validation. They are asymmetric and probabilistic, but they are probabilistic in a bad way

since their security relies on randomness. Elliptic Curve Cryptography (ECC) is more

challenging to break than RSA cryptography, so shorter keys can be used. An elliptic

curve key of 256 bits provides about the same security as an RSA key of 3072 bits. JWA

specification sets implementation requirement for ES256 as “recommended+”, which

means its importance will increase in future [40]. [41]

Edwards-curve Digital Signature Algorithm (EdDSA) could be better than ECDSA algo-

rithms, but it has yet to be widely supported. A probabilistic nature is required for EC-

DSA's security, which is not optimal. EdDSA algorithm is deterministic and uses random-

ness only in private key creation. EdDSA is performant in both signing and validation and

avoids many known vulnerabilities. Two of its variants have been added to the JOSE

specification [43]. [41]

3.6.5 JSON Web Signature

JSON Web Signatures are JSON-based objects secured using Message Authentication

Codes (MACs) or digital signatures. JWS objects are composed of the JOSE header,

JWS payload, and JWS signature parts. JOSE header is a union of the JWS-protected

header and JWS unprotected header. JWS objects can be serialized using JWS Com-

pact Serialization or JWS JSON Serialization. In both, all parts of JWS are encoded us-

ing base64url, except for the JWS unprotected header in the JWS JSON serialization

structure. [44]

30

JWS compact serialization consists of a protected header in UTF8 format, JWS payload

and JWS signature, all encoded with base64url and concatenated with dots. JWS's un-

protected header is unused. This structure is shown in Figure 15 below. [44]

Figure 15. JSON Web Signature using JWS compact serialization. [45]

JWS JSON serialization represents the JWS as a JSON object. It consists of one or both:

a JWS-protected header in UTF8 format and a JWS unprotected header with JWS pay-

load and JWS signature. JWS unprotected header is not base64url encoded, but other

values are. Figure 16 shows the structure with JSON names. [44]

Figure 16. JSON Web Signature using JWS JSON Serialization. [44]

JWS are used to identify the sender of the JWT. Although JWS is encoded, it is not

encrypted, so any intruder can construct the plaintext JWT.

Next is an example of JWS in JWS compact serialization. The JWS-protected header

describes the type of the object to be a JWT and the algorithm to be HS256, meaning

the use of HMAC SHA-256 algorithm for signing. This is shown in Figure 17 below.

Figure 17. Example JWS protected header in plain text. [44]

This header is then turned to UTF8 format and encoded using base64url, which results

in the following value:

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

The JWS payload of the example JWS is shown in Figure 18 below.

31

Figure 18. Example JWS payload in plain text. [44]

Base64url encoding this payload results in the following value:

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzO-

DAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The encoded header and payload in ASCII format are used as input for the signing algo-

rithm, concatenated using a dot in the format of “encoded-header.encoded-payload”.

The symmetric key used in this example is shown in Figure 19 below.

Figure 19. Example symmetric key used in HMAC SHA-256 algorithm. [44]

The yielded value from running the signing on the given input encoded with base64url

is:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Combining the full JWS in the format shown in Figure 15 results in the following value:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzO-

DAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

.

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

This full JWS can now be used to authenticate an API, for example.

3.6.6 JSON Web Encryption

JSON Web Encryption represents encoded JSON-based data structure. They consist of

six possible parts depending on the serialization. These are JOSE Header, JWE En-

32

crypted Key, JWE Initialization Vector, JWE AAD, JWE Ciphertext, and JWE Authenti-

cation Tag. JOSE Header has three sub-parts: JWE Protected Header, JWE Shared

Unprotected Header, and JWE Per-Recipient Unprotected Header. JWEs can be con-

sisted of using either JWE Compact Serialization or JWE JSON Serialization. [46]

JWE Compact Serialization consists of JWE Protected Header in UTF8 format, JWE

Encrypted Key, JWE Initialization Vector, JWE Ciphertext, and JWE Authentication Tag,

all separated with dots from each other. Each part is separately base64url encoded. This

serialization is shown in Figure 20 below. [46]

Figure 20. JSON Web Encryption in JWE Compact Serialization format. [46]

In JWE JSON Serialization format, one of the JOSE headers’ sub-parts must be present

with JWE Encrypted Key, JWE Initialization Vector, JWE Ciphertext, JWE Authentication

Tag, and JWE AAD. All but JWE Shared Unprotected Header and JWE Per-Recipient

Unprotected Header are base64url encoded. These parts are presented in JSON-style

objects. Figure 21 below shows this format with names and their corresponding values.

[46]

Figure 21. JSON Web Encryption in JWE JSON Serialization format. [46]

JWE structures are not signed, but they are encrypted. It means that the receiver cannot

identify the sender. Only the sender and the receiver can decrypt the contents of the

JWE.

33

4. AUTOMATED SOFTWARE TESTING

Failure is unwanted behaviour or lack of wanted behaviour in software. The most signif-

icant cause of software failures is product specification. It can be deficient, contain errors,

be inaccessible, or there might not be one to start with. The next most significant cause

is software design. It can also be insufficient, poorly documented and communicated, or

contain errors. The third most significant cause of failures is programmatic errors. Often,

these are caused by complex software, rushed schedules, insufficient documentation, or

plain mistakes. Many failures seem to be programmatic errors on the surface, but they

can be traced down to be errors in design or implementation. [47]

One main objective of automated software testing is to find failures, fix them and make

the software work as intended. Failures waste developers' time by requiring focus on

tasks that do not progress the software. Tests that are run often and, most importantly,

before integration and deployment phases provide early warnings of broken functionali-

ties. [48]

It is essential to find failures as soon as possible since failures in production affect cus-

tomers and can be very costly to the company by losing customers’ money and time,

affecting the company’s reputation. The cost of failures grows logarithmically as the soft-

ware goes from specification through design, coding and testing to release [47]. Although

initial investment in using automated testing can be notable, it will improve quality and

reduce maintenance costs in the long run. [49]

Finding failures leads to the bigger goal of testing: enabling sustainable growth of the

software project. It is easy to create growth at the beginning of the project, but when the

code base grows, progress becomes slower. Each row of code is a liability because it

could contain failures. By probability, the more code there is, the more failures the code

contains, them being noticed or unnoticed. These start to stack up and take time away

from driving the software forward with new features. Making progress becomes slower

or stops completely. [48]

This decreasing development speed phenomenon is also known as software entropy.

Entropy, on a general level, is used to describe disorder in systems. Software entropy

can be seen in the form of code that deteriorates. Each change in code base increases

its entropy, in other words, complexity and disorder, if not taken care of properly. Such

caretaking can be, for example, cleaning and refactoring. Entropy growth eventually

leads to situations called regression, where modifying one part breaks some other parts.

34

Fixing failures and unwanted behaviours becomes a never-ending task, and no real pro-

gress can be made. The code base becomes unreliable, and regaining stability becomes

more difficult. [48]

Tests help with this since they work as a safety net, providing stability and insurance

when creating new functionalities or refactoring some parts of the code. When done cor-

rectly, they ensure that new functionality works as expected and does not affect already

existing functionalities or have other side effects. They ensure that the software is sus-

tainable and scalable. [48]

Tests can also ensure the quality of the software design. Tests and underlying production

code they test are highly intertwined. It is practically impossible to create valuable tests

if the code base they cover is not well designed. Tests and the code base are developed

together, requiring significant effort to be put into the code base for tests to be valuable.

A side effect of this is that the necessity of creating tests for production code often leads

to better code design. Developing valuable tests also provides a deeper understanding

of the functional requirements that the system under testing has. Although this is not the

primary goal of testing, it is a good side effect. [48]

Testing can also indicate poor-quality code, especially tightly coupled code. If some parts

are challenging to test, the code might need more modularity. It does not work vice versa;

easily testable code does not automatically mean good-quality code. [48]

On the other hand, it is vital that testing is done correctly and efficiently. Each line of

code can contain failures, which also applies to the testing code. The more testing code

there is, the more failures there are in the tests, and the more they increase the upkeep

and maintenance costs of those tests and the project. Tests must be maintained the

same way as production code, so tests must be designed, implemented, and conducted

in a way that they provide maximum value. Often, it would be better to not write a test

rather than write an inefficient test. [48]

Inefficient tests also have other effects. They might give false positive alarms if coupled

heavily with production code implementation. False positive alarm is a situation where a

test case informs of a found failure even though there is not one. A significant number of

false positives lowers the trustworthiness of the tests, leading to lowered motivation for

implementing and using the tests. Inefficient tests might not reveal failures they are de-

signed to reveal due to incorrect implementation. It leads to failures passing through to

production deployments. Complexity and slowness decrease the value of the tests since

they require more maintenance and running time. Higher running time decimates the

35

number of times the tests are run, which decreases their potential of catching failures

early. [48]

In contrast to inefficient tests, good tests maximize the benefits of testing while minimiz-

ing the effort put into them. They reveal failures effectively without giving false alarms.

They are integrated into every part of the development cycle to ensure early discovery

of failures. They are automated, repeatable, easy to implement, quick, and easy to run.

They are readable, maintainable, and trustworthy, so they get used to their maximum

potential. Good tests provide a safety net against regression, and they have high re-

sistance to refactoring. [48], [50]

4.1 Automated testing concepts

There are different fundamental concepts on how software tests should be constructed.

Black box and white box testing are two opposite software testing concepts. They provide

a frame of how tests are developed and constructed. Black box testing implements tests

without knowing the inner implementation of the code. These tests are generated purely

based on the public interface, so they do not test how something is done but what the

code does. These tests are derived from software requirements and specifications. In

the opposing white box testing, the application's inner workings are tested, the how-part.

These tests derive from source code. [47]–[49]

Both concepts have their pros and cons. White box testing could be tightly coupled with

implementation, which generates brittle tests that might provide false positive alarms and

do not resist refactoring. Brittle and fragile tests tend to fail even if the testable function-

ality has changed only internally, or the change is in some other functionality. On the

other hand, they provide a deeper understanding of the implementation and may spot

errors not visible from the external specification. Black box testing has the opposite pros

and cons, meaning tests resist refactoring well and are not fragile but do not provide a

more profound vision of the code under testing. There could remain scenarios and hid-

den effects that are not verified by tests. The optimal testing suite is created by combining

both concepts in the right way. [47]–[49]

Test pyramid is a software testing concept that is used when composing a general struc-

ture of tests. It represents the proportions of different testing types in a software project.

It often consists of three parts, shown in Figure 22: unit tests, integration tests, and end-

to-end tests. The pyramid displays the relative quantity of given test types. Figure 22

provides a general model, which can be modified to the needs of a project. Integration

36

tests might have greater value if the project is smaller and more straightforward, for ex-

ample, a basic CRUD (Create, Read, Update and Delete) interface. On the other hand,

if the project contains a lot of algorithmic, complex business-critical utility code, the num-

ber of unit tests might be greater. End-to-end tests test the system in the most produc-

tion-like situation possible. It means that all shared dependencies with testing possibility

are not mocked out but instead used in the tests. End-to-end tests ensure that the whole

application is working together. End-to-end tests can also interact with the user interface.

Depending on the available user interface, these tests are sometimes separated into

own, fourth group, UI or GUI tests. It is important to note that the broader and more

consuming the tests are, the fewer there should be those in the testing suite; therefore,

the pyramid-shape. [48]

Figure 22. Test pyramid consisting of the three primary testing types. [48]

Testing concepts are utilised when testing suites are designed and implemented. Multi-

ple types of automated tests can be used to ensure quality on different levels of the

software from different perspectives. They are differentiated by their objective, broad-

ness, target, behaviour, and other properties. The most used ones are unit testing, inte-

gration testing, and acceptance testing. Other testing types are, for example, end-to-end

testing, regression testing, stress testing, penetration testing, smoke testing, perfor-

mance testing, static analyses and many more. It is important to recognise which types

are necessary and provide value to the project under testing. [48]

Unit tests are the smallest and most basic type of tests. There are a lot of different defi-

nitions and nuances when defining unit tests. Essential features of unit tests are that they

37

are quick, automated tests that verify a small piece of code called a unit in an isolated

manner. [48]

Integration tests are the next type of automated tests. The simplest definition is that in-

tegration tests are tests that do not fit into the unit test definition. Another definition could

be that integration tests verify the behaviour of multiple units working together, integrated

into each other. Properties that integration tests often have are that they verify systems

behaviour with external dependencies, work with multiple units of code and are not iso-

lated or as fast to run as unit tests. Many of the other testing types fall under the definition

of integration testing, but they have other more accurate definitions. [48]

End-to-end testing, also known as E-to-E, E2E or system testing, is one of these types

of integration testing. The objective is to test the software behaviour from a client’s per-

spective. They are the most comprehensive type of automated testing since it goes

through the whole software. E2E tests are often the costliest tests because they are

complex, challenging to maintain, and require lots of initialization work to be run. On the

other hand, they provide the best insight into the software’s behaviour from the business

point of view. [48]

Acceptance testing or user testing is intended to test against requirements set for the

software. These tests are planned based on the requirements that the user or customer

has set and accepted for the software. Actual users or customers often perform ac-

ceptance testing. This way, the testing enforces the black box style: the user can use

anomalous actions that reveal some unexpected software behaviour. This way, ac-

ceptance testing also tests for human factors affecting the software. Acceptance testing

is usually the last step before handing the software to the customer. [51]

Regression testing is a particular type of testing. Its purpose is to verify that changes to

one part of the software have not invalidated some other part, in other words, testing

against regression. Unexpected side effects can be relatively common when changes to

the code base are made. Coding errors cause some side effects, but some stem from

subsystem integrations. [51]

Stress testing is another particular type of testing. Its purpose is to test how the system

behaves when it is pushed to or over its designed capabilities. One example of stress

testing is to test for database connection capability. If the software can handle n number

of simultaneous connections, what happens when n + 1 connections are made? What

happens when a thousand or million users connect? [47], [51]

One part of stress testing is special situations. These can be low disk space, no internet

connection, or slow CPUs. An example of a special situation is the turn of the millennium,

38

also known as the Y2K problem and the handling of unexpected formats in years. [47],

[51]

In multithreaded, concurrent software, race condition testing is valuable. It ensures the

software works successfully even though some tasks or threads fail. It also ensures that

synchronization between different tasks and threads is successful. [47]

The last particular type of testing is repetition testing. It is mainly used to find memory

leaks by doing the same operation over and over again, such as loading and saving a

file. [47]

4.2 Testing measurements

There are some ways to measure the effectiveness of tests in a project. By addressing

that test can have four different outcomes, tests can be classified and measured accord-

ing to the results that they provide. These four outcomes are:

- There is a failure, and the test finds it.

- There is a failure, and the test does not find it (false negative).

- There is no failure, and the test finds a failure (false positive / false alarm).

- There is no failure, and the test does not find a failure.

The first and last ones are those that tests aim towards. The second and third outcomes

are flaws often produced by bad-quality tests. Tests that produce false results undermine

trust towards the tests and make testing a burden rather than an asset. [48]

A good test can find failures without generating false alarms. A test property called test

accuracy measures how well a test achieves this. The number of failures, or signals, is

divided by the number of false alarms, or noise, that the test produces to calculate test

accuracy, as shown in Figure 23. Both variables in that formula are critical; a test that

can find no failures is useless, as is a test that produces only false alarms. Test accuracy

property is problematic in the case that there are no false alarms or there are no failures

found. [48]

Figure 23. Test accuracy formula. [48]

Some measurements do not concentrate on the test's results but on the analysis of tests

and their execution in relation to the system under testing. One of these metrics is cy-

clomatic complexity, which describes code complexity. It is calculated by number of

39

branches in a program or method. It can be used to describe the different paths the code

can flow. This number is tied to unit testing metric branch coverage since the cyclomatic

complexity value is the number of atomic tests required to test the given code. Cy-

clomatic complexity is calculated with formula:

𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 1 + 𝑥

where x is the number of branching points. [48]

A similar metric with cyclomatic complexity is cognitive complexity. It tells how difficult

the code is to read and understand rather than how difficult it is to test. Cognitive com-

plexity is more difficult to calculate since it is human-related rather than purely mathe-

matical, but the basic idea is to [52]:

- Ignore structures that allow readable short-handing of statements, such as the

null-coalescing operator.

- Increase with each break in the code’s linear flow, for example, loop structures.

- Increase with nested structures that are flow breaking. For example, two consec-

utive if-clauses (cognitive complexity of 2) are easier to understand than two

nested if-clauses (cognitive complexity of 3).

The next measure purely used for the testing suite is code coverage, also known as test

coverage, a testing metric that tells how many lines of the production code are tested by

the automated tests. It is calculated by dividing the number of code lines that are exe-

cuted at least in one test case by the total number of production code lines, as shown in

Figure 24. [47], [48]

Figure 24. Code coverage formula. [48]

Branch coverage is another similar metric used with unit tests. It measures code

branches traversed compared to the total number of branches, as shown in Figure 25.

This metric focuses on control structures within the code, such as if and switch state-

ments. [47], [48]

Figure 25. Branch coverage formula. [48]

40

Code coverage can be a treacherous metric because it is easily manipulated by refac-

toring the code into more compact lines, for example, by turning if-else statements into

ternary operators. Compared to the code coverage way of measuring raw code lines,

branch coverage provides greater insight into how well the tests test the code behaviour.

Branch coverage is more challenging to manipulate with refactoring since, for example,

with ternary operator usage, the same branches still exist. Even so, this metric also suf-

fers from the same treacherousness. Figure 26 shows an example of this refactoring with

ternary operator. [48]

Figure 26. Refactoring effects on code and branch coverages. [48]

There are also a few other pitfalls when it comes to the use of coverage metrics. The first

of them is that the tests are not guaranteed to test all outcomes. Code coverage counts

all executed code lines, not tested. There can be, for example, some class member as-

signment that is not tested but only executed, and only the function return value is tested

with assertion. Coverage metrics can hide these within them. [48]

Another pitfall is the so-called pesticide paradox: the more the code is tested, the more

immune it becomes to the tests. The same tests will not reveal more failures after some

time, so new tests or different testing methodologies must be implemented to find more

failures. Therefore, coverage metrics generated by the tests can be good, but the effi-

ciency of the tests can be poor. [47]

The third pitfall is that without assertion, or in other words, testing, the tests usually pass

and provide code coverage, given that no exceptions are thrown. This behaviour can be

41

achieved, for example, with function calls within the test case, but those calls or function-

alities not being tested with assertions. [48]

The last pitfall is external libraries used within the code under testing. Even though code

and branch coverages would be hundred per cent, there is still the possibility of different

outcomes from hidden branches inside the external library. For example, a function of

the external library can throw an unexpected exception with a specific, untested input

value. Therefore, there can still be outcomes of the testable function that are untested

and uncounted for, even with full coverage metrics. [48]

Code and branch coverages can give insight into test quality but should be used with

reservation. If they are low, it most certainly means that the testing needs to be improved,

but this does not work vice versa. A conclusion that unit test suites are sufficient cannot

be drawn straight from the fact that these metrics provide high values since all tests can

still be inefficient. Therefore, these values provide one more measure which can be used

to help with unit testing development. [48]

4.3 Unit testing

Unit tests are the most basic form of software testing. They are small and fast, and they

usually create the base of a testing suite because most tests are in that category. The

most basic definition is that a unit test is a test that verifies the correct functioning of a

small piece of code in an isolated and quick manner. [48]

Important functional concepts regarding testing are dependencies and test doubles.

These two concepts are highly coupled to each other, and they are used in most other

areas of unit testing. [48]

4.3.1 Dependencies and testing doubles

Testing doubles are used in test suites to replace dependencies of the code under test-

ing. There are different types of dependencies: private, shared, volatile and external.

[48], [50]

- Private dependencies are only referenced by the unit under testing.

- Shared dependencies are shared between different units under testing.

- External dependencies are not in-memory of the program, such as a database.

They are often also shared, but not always; for example, the database instance

could be run in its own Docker container for each test, making it external but not

shared.

42

- Volatile dependencies require installing, setting up or configuring the machine, or

they have non-deterministic behaviour. Shared and volatile dependencies often

overlap; for example, a database is both, but a file system is shared but not vol-

atile since it exists ready by default. An example of non-deterministic volatile de-

pendency is a private class that generates random numbers.

Test doubles are most used to replace dependency classes in the system under test-

ing, allowing for accurate testing and monitoring. There are a few types of test doubles

depending on their composition and usage. These are mocks, spies, stubs, dummies,

and fakes. [53]

Stubs are test doubles that are used to inject indirect inputs into the system under testing.

Their production code counterparts are only used to retrieve data, and therefore stubs

cannot be asserted against. Stubs can be further classified into two groups: responders,

which inject valid data and saboteurs, which inject invalid data, such as errors and ex-

ceptions. [53]

Spies are fundamentally like stubs. The difference is that they can be used to observe

the system's outputs under testing by capturing indirect outputs of the system under test-

ing while being exercised. These observations are saved, and they can be used later for

verification. [53]

Mocks are used to verify the indirect outputs of the system under testing while it is being

exercised. They also often have the functionality of stub since they have to return values

to the system under testing, but the main weight is on the verification of indirect outputs.

[53]

Fakes are used to replace the dependencies for reasons other than verification of indirect

inputs or outputs of the system under testing. They often have the same functionality as

the production object but are much more straightforward. While being built for testing

purposes, they are not used for control or verification. Usual usages are to replace non-

existing production objects, too slow objects, or to eliminate deleterious side-effects from

the tests. [53]

Dummies are objects that are used when neither test nor the system under testing care

about it. They are often as simple as possible, for example an instance of object-class

or a null object. In a sense dummies are not test doubles, but a way to satisfy the inter-

face of the system under testing. [53]

43

4.3.2 Testing concepts

There are different fundamental concepts regarding unit testing. The first one is regard-

ing the verification process of the tests. There are generally three ways to verify the

correct functioning of the system under test: output-, state- / result-, and communication-

/ interaction- / action-based testing. They provide different approaches to viewing the

correct functioning of the code. [48], [50]

Output-driven testing means the tests verify that the expected output is received with

given inputs. This style works well with the functional programming style since the sys-

tems under test should not contain side effects and invariants but only input and output,

which can then be solely used. This style of testing is decoupled from the implementation

and has resistance to refactoring since only the public interface is used. This decoupling

leads to lower maintenance costs when refactoring or fixing the production code. [48]

State- or result-based testing verifies that the system under testing and its collaborators

are in the correct state after the operation under testing. State-based testing is often

used with an object-oriented programming approach to ensure that objects function cor-

rectly. The downside is that state-based tests verify a more significant portion of the

system's public interface under testing alongside dependencies compared to output-

based tests and, therefore, are more easily coupled to the implementation. State-based

tests are also often less maintainable because they contain more assertions than output-

based tests. [48], [50]

Communication-, interaction-, or action-based testing is the third way to test the code. It

uses test doubles to verify that different parts of the program communicate correctly. This

style tends to couple heavily with the implementation since it dictates how the system

under test should communicate. This coupling leads to brittle tests. Overusing this style

might lead to shallow tests since everything is mocked out, and only a small portion of

the program is tested. Communication-based tests are not maintainable since they re-

quire setting up the test doubles and interaction assertations, and they do not resist re-

factoring because of coupling with implementation. [48]

The vague and argumentative definition of unit testing has created two schools of unit

testing. These groups are classical / Boston and London / Mockist. They view unit testing

principles, objectives and definitions from different perspectives, so they provide different

ways of creating unit testing suites. [48]

Unit tests defined on the fundamental level are tests that verify a small unit of code in a

quick and isolated manner. The separation between classical and London concepts

44

stems from the different interpretations of this definition, which leads to different styles

of creating unit testing suites. [48]

In classical style, the unit is defined as a unit of behaviour. In London style, the unit is a

unit of code. The interpretation of isolation also differs; the classical school has an isola-

tion of the unit tests, and the London school has an isolation of the code under testing.

The main resulting difference from this is the use of testing doubles, such as mocks and

stubs. In some cases, the way to verify the results of the test differs fundamentally. [48]

Classical concept enforces the correct behaviour of the unit under testing. It is often done

by using output- and state-based assertations. Only shared dependencies should be

mocked to create isolated unit tests that emulate the production behaviour. This means

that the production code should be used when it is possible. The use of production code

provides great testing coverage and effectively reveals failures. It also verifies that the

unit works as intended from the client's perspective. It resists refactoring well since the

tests are not coupled with the implementation of the unit under testing. On the other

hand, these tests provide alarms if a dependency is erroneous, leading to alarms in tests

not directly related to the error, which leads to possible difficulties finding the failure lo-

cation. With larger projects, testing might become complicated and laborious if the pro-

gram consists of a large number of interconnected dependencies. [48]

The London style of testing incorporates test doubles to isolate the system under testing.

This means using test doubles for all shared and mutable private dependencies, mean-

ing only immutable private dependencies will not be mocked out. In the London system,

the goal is to ensure the correct working of the unit under testing, separated from other

parts of the program. This separation often leads to output- and communication-based

assertation style. This style produces granular tests that accurately pinpoint and delimit

the failure location. However, with extensive use of test doubles and communication-

based testing, the tests might get tightly coupled to the implementation and be over-

specificized, which leads to brittle tests that do not stand against refactoring [53]. This

coupling leads to false positive alarms and increased maintenance costs. [48]

4.3.3 Test-driven development

A more abstract approach to unit testing is test-driven development, which can be used

with both classical and London testing styles. Test-driven development is a way to em-

phasise the importance of testing in quality software production. It can mean a few things

from a practical view: test-first development, which means creating tests before the ac-

tual code; test-driven design, where testing also drives the design of the code; or some-

thing in between. [50]

45

In classical programming workflow, the production code is written first, and then the tests

are written to ensure the correct functioning. This is illustrated in Figure 27. [50]

Figure 27. Classical flow of software development. [50]

The cycle is flipped around in test-driven development, as seen in Figure 28. The tests

are written first to fail since no production code fulfils their requirements. Then, minimum,

passable solutions are written so that the tests pass. Then the code is refactored to be

suitable and ensured to be still working by the tests. [50]

Figure 28. Test-driven development flow of software development. [50]

The idea is that small, incremental steps taken in cyclic test-driven development allow

for controlled software growth. The tests work as a safety net for the production code,

emphasising the connection between testing and quality code. It must be noted that test-

46

driven development does not ensure better quality but rather provides ways to incorpo-

rate effective practices. [50]

4.3.4 Test case design

When creating testing suites, every possible input-output combination, state, and situa-

tion cannot be tested separately because there would be infinite test cases. Therefore,

equivalent partitioning must be used to group scenarios together. Equivalent partitioning

is the process of narrowing the number of test cases into smaller but effective sets. Test

cases are divided into equivalent classes. Each test in a class tests the same thing,

possibly revealing the same failure. Therefore, each equivalent class can be reduced

into one test case. There is always a risk with equivalent partitioning; too much and fail-

ures will go unnoticed, or too little and the testing suite will be inefficient and costly to

maintain. [49]

Data that is used in the software is often the basis for equivalent partitioning. It is divided

into valid, null, and invalid or garbage data. Valid data can be expected; for example, an

integer field expects all whole numbers. Null data for that field could be null or Not-a-

Number (NaN). Invalid data could be a text string or something else unexpected. Null

and invalid data groups create their equivalent classes as they are, but valid data is

divided into different partitions based on boundary conditions. [49]

Boundary conditions are set restrictions for the software; for example, the integer field

could be limited to have values inclusively between 0 and 1000. This field's boundaries

would be values 0 and 1000, creating equivalent classes for negative integers, integers

within the range of 0-1000, and integers over 1000. Each boundary condition is usually

also its equivalent class, so there would be five equivalent classes from these boundary

conditions. Each class would have one to few test cases. [49]

There are also sub-boundary or internal boundary conditions which can be used to fur-

ther partition tests. These are boundaries created by the internal specification of the soft-

ware. The integer field could be in C++ type int, which is 32 bits with a maximum value

of 2147483647 and minimum value of -2147483648. These could be considered as

boundary conditions for testing, creating four more equivalent classes. [49]

Another separation method for testing suites is to divide tests into positive, negative, and

exception tests. This separation provides aids for clear names and defined structures for

the tests. Combined with parametrizing the tests, it creates clear groups of efficient tests.

Parametrizing allows for a test to cover multiple inputs with one test case, which provides

more thorough tests. [48]

47

4.3.5 Test practicalities

Creating unit tests has a lot of practicalities, which are used to improve readability and

maintainability. The classical definition of unit testing emphasises the isolation of test

cases, meaning tests should also have independent modification and execution. Testing

classes can have constructors, they can be derived from other testing classes, or the

test cases can have initialiser methods. All of these can be used to combine common

functionalities between test cases, such as test double creations. Combining does de-

crease code replication and helps to adjust test cases if there are changes in the ar-

rangement classes; for example, if their constructors change [50]. On the other hand,

using initialization functions and test class constructors can result in high coupling of the

tests since test cases are no longer independent. They might also decrease the reada-

bility of test cases since code related to them is scattered into multiple places [48].

The consistent structure of all test cases makes it easier to follow the flow of the tests

and understand them. It also eases cognitive load when reading unfamiliar test cases.

The typical structure is the AAA pattern (Arrange, Act, Assert). It consists of three parts

[48]:

- Arrange is used to get the system under testing and its dependencies into the

state required for the test case.

- Act section is used to call desired methods on the system under testing and cap-

ture the resulting output.

- Assert part is where the correct behaviour, output, or state of the system is en-

sured.

Another equivalent pattern is the Given-When-Then pattern, which works the same way

as the AAA pattern. It might be easier for non-programmers to understand, but other than

that, there are no differences. [48]

Another principle that improves readability and maintainability is consistently naming test

cases. The commonly used naming structure consists of the method under testing, sce-

nario, and expected result combined with underscores [50]. For example, if the method

name is GetAuthorizationHeaderValue, the scenario is that the authorization header is

requested multiple times and the expected result is the use of the previous token with

latter requests, the resulting test case name would be ”GetAuthorizationHeader-

Value_MultipleCalls_UsePreviousToken”.

Another structure for naming test cases is plain English sentences. For example, the test

case above could be named “Use_previous_token_with_consecutive_authentica-

tion_calls”. This way, the behaviour of the test and the system under testing is easier to

48

understand, even for non-programmers. This style reduces the cognitive payload re-

quired to understand the test case. It also highlights the testing of behaviour rather than

implementation. The use of the method name in the test case name also couples the test

to the implementation. [48]

Although plain English naming provides many benefits, the three-part naming system is

widely used. It also constructs each test case name similarly, unifying test cases and

improving readability and understandability. Because this system is widely used, it allows

new persons to quickly understand the tests and get to work quicker, which reduces

maintenance costs.

Another widely used naming convention is naming the system under testing “SUT” inside

the test case. This convention provides a unified, simple, and understandable way of

recognizing the most essential object in the test case, which improves readability and

maintainability. [48]

4.4 Integration testing

Integration tests are automated tests that do not fulfil some of the requirements for being

a unit test. They often combine many software units to test that the parts work together

and the software works as a whole. They are often slower, more complex to create and

automate, broader than unit tests, and they often need more configuring. [48], [50]

Integration tests often collaborate with out-of-system dependencies, such as databases,

to ensure that they work as expected in production environments. Only unmanaged out-

of-process dependencies should be mocked to verify that the communication stays the

same between the systems. [48]

4.5 Continuous integration

Continuous integration is a software development process in which each team member

frequently integrates their local work to a single, shared, and controlled source code re-

pository. It consists of a set of practices and procedures that are triggered by usually a

change in source code and lead to either producing a tested and analysed working build

or giving fast feedback on broken functionality. [54], [55]

The first of these practices is maintaining a single, shared repository. Everything neces-

sary for building the program must be there, but other essential things, such as configu-

rations or documentation, can also be stored there. The repository should have a main-

line where most of the work is done. Different branches are functional, but overused can

cause problems. [54]

49

The next practice is to have an automated, fast, and self-testing build job run on a sep-

arate machine. Building the program should happen with a single action from the user,

for example, running a script or pushing a button. The build should include everything

required to get a clean machine to have a working instance of the software. Automated

environments are often used, such as MSBuild with .NET. [54]

The process should automatically run automated tests to ensure the working of the build.

Automated tests provide fast feedback about the state of the build. Different analyses

can also be run, such as SonarQube static analysis. These can reveal vulnerabilities,

inaccuracies, and weaknesses. [54]

Keeping the build fast is vital so developers get feedback on their work and can continue

different tasks. A multipart build pipeline can help with this. The pipeline consists of many

stages, which run in sequence. Example pipeline could consist of three parts: building,

running unit tests, and running slower tests such as integration tests, end-to-end tests,

and static analyses. By dividing the process into these stages, developers get fast feed-

back from the quick-running stages, and the slower stages ensure that the build is viable

in the production environment. [54]

An essential part of continuous integration is to fix the build immediately if it breaks. One

main principle is to be able to develop the program on a known stable base, a working

build. When the build breaks, this stable base of development also breaks. [54]

The last practices of continuous integration relate to the visibility of the build. Everyone

should be able to see what is happening in the development and build process so that

the progress rate and possible challenges are known across teams. The latest executa-

ble should also be readily available for everyone involved with the software so that it can

be efficiently run and tested by anyone involved. [54]

Values that continuous integration creates are reduced risks, reduced repetitive pro-

cesses, generation of deployable software, enhanced project visibility, and enhanced

confidence of the development team. The downside is the maintenance costs of the in-

tegration workflow. [56]

Continuous integration helps discover defects earlier, allowing them to be fixed earlier.

It also allows for the health of the software to be measured and monitored over time.

Reducing repetitiveness saves time and effort. Continuous integration ensures that the

build process is automatic or easy to run and runs the same way every time. This frees

developers to do higher-value work. [56]

Deployable software is the most tangible part of the process for clients and customers.

The importance of creating a deployable software version quickly at any time cannot be

50

overstated. Continuous integration pipeline detects problems immediately, they can be

fixed as soon as possible, and a working deliverable can be created. Without this pro-

cess, the failures may go unnoticed, they are fixed later, technical dept might accumu-

late, and releases might be delayed. [56]

Continuous integration allows for measuring and monitoring the health of the project.

Project visibility allows noticing trends in build success, software quality, failures, and

vulnerabilities. Measurements and monitoring provide temporal and just-in-time data,

which can be used to make effective decisions. [56]

Continuous integration can also improve the confidence of the development team. Fre-

quent integration, building, and testing provide fast feedback. This feedback allows de-

velopers to know the impacts of their work and reduces the fear of creating regression in

different parts of the program. [56]

51

5. DESIGN AND IMPLEMENTATION

The software design process is either linear, like the waterfall model, or cyclic, like the

scrum methodology. The waterfall model handles one step of software development fully

at once before moving to the next one. Cyclic models have an iterative nature. When

minor improvements are made to any part of the software, changes are reviewed and

validated, and the next version is planned upon the previous one. [57]

In all process models, software design begins by defining the requirements and con-

straints for the program. Requirements come from the problem that the software is trying

to solve, often defined by end users. These requirements must be achieved within some

constraints that define the solution space. Constraints can be explicit or implicit, and they

can be discovered or introduced in the course of the design process. [57]

Other significant steps in software development processes are architecture design, im-

plementation, and testing. Architecture design consists of creating a system-level struc-

ture for the software. The implementation part is where the production software is created

based on the design. Implementation is then validated and verified using different testing

methods. [57]

5.1 Requirements and constraints

The software that this research aims to construct is the verkkotietopiste interface module

that sends construction plans to Traficom. The basis for this is defined in Section 2. The

module, its design and implementation are influenced by development and production

environments and other software working with it.

First, constraints are set by the production environment that is used with the whole Mi-

croSCADA product, which the module will be part of. It is used only on Windows ma-

chines. The part of the main MicroSCADA product where the module will be integrated

uses C# and .NET Framework version 4.8. Those must be used for this module to be

compatible with the main product. Using them allows for a seamless development and

deployment process.

The module uses external libraries to achieve the required functionalities and a more

fluent development workflow. These libraries must be licensed with an Apache-2.0 li-

cense [58] or something less restrictive. The licenses of external libraries must also be

copied and sent to the customer with the final product. This way, the license require-

ments are lawfully fulfilled.

52

This client and the server communicate using HTTPS, HTTP1.1 and TLS 1.3 versions.

Since this module is a client for a REST API, the API specification dictates many of the

technologies.

Data transfer to and from the server happens using JSON data format. Authentication is

conducted using signed JWTs. The JWT must contain the following

claims: iss, sub, aud, iat, and exp. Iss, sub, and aud values are static ones received

from Traficom via separate request. Iat and exp values are filled dynamically for each

authentication request. [59]

The JWS component is created from the JWT using the RSA key with the RS256 algo-

rithm, which is short for “RSASSA-PKCS1-v1_5 using SHA-256”-algorithm [40]. Suc-

cessful authentication grants the client an access token, which is used with every request

to authorize access to the requested data object [59].

Other technical specifications from interface specification are related to data formats.

The first one is the data type for different geometries. GeoJSON must be used, which is

a JSON-based data type used for geometrical data. Another specification concerns co-

ordinate systems. The ETRS-TM35 coordinate system must be used for all XY-plane

coordinate points. Z coordinates are not stored on the server. [59]

Internal continuous integration systems create the rest of the restrictions related to soft-

ware building and testing. The build server uses Visual Studio 2017 (version 15.0), which

means that MsBuild of that version must be used for development. It also restricts the

C# language version to C# 7.0. The tests are run with the MsTest framework, so auto-

mated tests must use MsTest v2.

Since the created version of the product will be a minimum viable product (MVP), there

are only a few required functionalities. The module must be able to identify that the Trafi-

com server is live and be able to send construction plans when a customer starts the

action.

5.2 System architecture

The overall system architecture consists of the MicroSCADA X DMS600 server, where

the DMS600 product is installed. Relevant parts of the installation are shown in Figure

29 below. These consist of a database, DMS600 Core, DMS Service and the Traficom

interface module. The module connects via the internet to the Traficom centralized infor-

mation point’s API.

53

The database is the central place where DMS600-related data is stored. Each compo-

nent connects to it by itself. DMS600 Core is used to create and handle the construction

plans sent to Traficom via the interface. DMS Service handles the life cycles of the mod-

ules and is also used to configure, monitor, and control them. Traficom interface is the

client module which is created in this research project. It is used to communicate with

the Traficom centralized information point REST API.

Figure 29. Overall system architecture.

The Traficom REST API implements CRUD operations for its data objects and JWT-

based access token authentication for them. The base URL for all requests is

https://api.verkkotietopiste.fi/api/external/. Relevant paths and operations for this project

are [59]:

- POST /getToken is used for authentication. Payload is the JWS structure de-

scribed in Section 5.1. If the authentication is successful, an access token is re-

ceived with the response from the server.

54

- PUT /plan is used to create or update construction plans. The construction plan

is transferred in the request's body. If the plan already exists, it is overridden with

the new plan, and if not, a new one is created.

The API also has paths for updating and deleting plans. It also has paths for different

types of objects. Those are not used since they are not necessary for the implementation

of required features.

5.3 Programmatic decisions

The complete module diagram can be viewed in Appendix A. This chapter will contain

only the most relevant parts of it.

The overall architecture of the software is not the main point of interest in this work, so it

is discussed briefly. The design is influenced by hexagonal architecture, which stems

from the layered architecture style combined with the domain-driven design style. The

primary design strategy separates domain logic, process control, and service connec-

tions into their own classes. This separation creates a modular, maintainable, and test-

able structure. [48]

The software contains four connections to shared dependencies and one to volatile ex-

ternal dependencies. These are connections to DMS Service, database, Traficom REST

API, file system and coordinate transform class. The connection to the parent program,

DMS Service and the interface module is shown in Figure 30. DMS Service connects to

modules through DMSServiceComponentBase interface. DMSServiceConnector class

implements is. It works as a mediator between the DMS Service and the module. It does

not contain any business logic.

Figure 30. Connection with MicroSCADA DMS600 DMS Service program.

Another external dependency is the persistence database, from which the construction

plan data is retrieved. Figure 31 shows classes related to that. PlanRepository class

provides a simple interface to read construction plans from the database. It returns the

data in an enumerable container containing the plans. Connection to the database server

is done through the IDbClientWrapper interface, which provides functionality to handle

the database. It is a wrapper interface since the actual class is external and static. By

55

using this wrapper method combined with the interface, the database connection can be

mocked to allow for easier testing.

Figure 31. Module desing for persistency service and database connection.

The third service to an external dependency is the service to the Traficom REST API, as

shown in Figure 32 below. Some parts of the program require authenticated access, and

others do not. Therefore, there are two different classes for the connection to separate

these use cases. The actual internet trafficking is done using the .NET class “HttpClient”.

This class is static throughout the whole program, so only one instance is used as rec-

ommended by the .NET documentation [60]. HttpClient class is mockable using external

libraries. By using the libraries, the testable functionality can be extended the most.

Figure 32. Module design of service for connecting to the Traficom REST API.

The server's file system is the fourth and final shared dependency, which stores the RSA

key and base JWT information in text files. IFileSystem interface from the .NET Sys-

tem.IO.Abstractions namespace is used to inject this dependency and make the con-

nected code more testable by mocking that interface in the tests.

56

The volatile, external dependency to the coordinate transform class is used for coordi-

nate transforming between different projection systems. Figure 33 shows the wrapper

interface and class used to access the dependency. The interface is used so that the

functionality can be mocked in unit tests.

Figure 33. Design for coordinate transform functionality.

Essential technologies regarding the software and its requirements are HTTP communi-

cation, JSON data structure, authentication with the Traficom server, and cryptography

related to the authentication. These are the core elements in web-based data transfer.

HTTP communication is handled using the HttpClient class. It provides an extensive in-

terface to handle requests and responses. Basic usage of the class is demonstrated in

Figure 34, where the implementation for ping requests is shown. The static HttpClient

instance, which already has a base URL, is contained in the _client variable. The Ping

method creates an HTTP request containing the GET method and “ping” path. No con-

tent is delivered in the body of the request. The request is sent asynchronously, and the

resulting task is returned to the function caller to be further handled.

Figure 34. Encapsulated basic unauthorized usage of the HttpClient class.

Authenticated use of the HttpClient is shown in Figure 35 below. The Put method is part

of the public interface for the AuthorizedVerkkotietopisteService class. It takes the path

57

in the “url” parameter and payload content in the content parameter. The private Cre-

ateRequest method is used to create the HTTP request containing authorization infor-

mation in the Authorization header. An instance of the class responsible for authentica-

tion functionality is contained in the _auth variable.

Figure 35. Encapsulatede authenticated usage of the HttpClient class.

Both client services return responses encapsulated into task objects. This way, asyn-

chronous execution and synchronization can be handled in controller classes.

JSON data is created using Newtonsoft.Json external library. Figure 36 shows a simpli-

fied example of data creation in JSON format. When the GetJSON method is called, the

object’s properties and values are generated into the new JSON object by the JsonCon-

vert.SerializeObject function. In Figure 36, the JSON would contain “planningStartDate”

with the property’s value at the time. The value is formatted from the .NET DateTime

object into the “yyyy-MM-dd” format using the CustomDateTimeConverter. Using the

Newtonsoft.Json library allows model classes to be simple and descriptive. They are

directly linked to the sendable JSON objects, which simplifies the data flow of the soft-

ware, making it easier to understand and maintain.

58

Figure 36. Simplified example of JSON data creation using Newtonsoft.Json library.

JWT-based authentication is a crucial part of the security for data transfer between in-

ternet parties. In Figure 35, the _auth instance and its GetAuthorizationHeaderValue

method are used to get the access token for Traficom REST API requests. Figure 37

shows the code for gaining the token. The token is valid for one hour, so the previous

token is used if it is still valid. Otherwise, a new token is requested by creating the re-

quired JWT structure, signing it using encrypting class instance in the _crypter variable,

sending the request with JWS as payload to getToken path with POST method and ex-

tracting the new access token from the successful response. This token is then returned

for current use and stored for further use.

59

Figure 37. Authorization functionality used to gain access token for Traficom REST
API.

Encryption is another critical part of secure data exchange on the web. The JWT data in

Figure 37 is signed using the Encrypt method of _crypter instance. Figure 38 shows this

signing functionality. It takes the JWT as a data parameter. First, RSA private key pa-

rameters are read using DotNetUtilities.ToRSAParameters function. Next, an in-memory

RSA structure is created with the read key parameters. Lastly, Jose.JWT.Encode func-

tion from Jose.JWT external library is given the JWT data, the RSA structure and the

RS256 algorithm to generate the JWS object. The generated object is then returned in

string format, ready to be used.

Figure 38. Encryption functionality used to sign authentication JWT with RSA key
using RS256 algorithm.

Programmatic decisions are used to aid with the testing of the software. The primary

testing concept used in unit testing is the classical style of unit testing. This style leads

to minimal use of mocks. Interface classes are only used to separate shared dependen-

cies from the business logic of the module. These interface classes can then be mocked

in the testing suite. The created interface classes are shown in Figure 44 in Appendix A.

60

One interface class separates the database connection from the business logic. Another

interface class, ICoordinateService, separates the coordinate transform functionality.

Coordinates are transformed using an internal library. The implementation uses a static

class, which is underlyingly dependent on the core MicroSCADA X DMS600 software

configurations. This dependency makes its functionality volatile and external, and it is

easier to wrap behind an interface and mock in tests.

There are also other shared external dependencies shown earlier in this chapter. Those

do not require creating separate interface classes since they can be mocked using third-

party libraries. This allows for the most extensive testing of the code created for the

module and for the communication it has with the other parties.

5.4 Automated testing

Automated testing is an integral part of quality software development. It integrates into

the program's design, implementation, quality, and delivery. It should be part of each

software project to ensure the successful growth of the software.

The testing aspect partly drives the design of the created data transfer module. The cho-

sen testing strategy is the classical way of testing, emphasising the use of production

instances in collaboration and ensuring the correctness of outputs and states received

due to actions performed. This strategy leads to minimal use of testing doubles in unit

testing.

One practice that increases test readability is using assertation libraries, such as Fluent

Assertions [61]. Assertion libraries help to structure assertions intuitively, as can be seen

in Figure 39. The upper assertion is done using default MsTest unit testing tools, and the

second one is with Fluent Assertions library. Even with this simple example, the library

provides a more sentence-like way of asserting, which helps with the cognitive load of

understanding the test cases.

Figure 39. Assertion for exception with MsTest default tools and with Fluent
Assertion library.

Figure 40 demonstrates the use of collaborating production instances in a test case. The

system under testing, more precisely its function CreateGeometry, is being tested when

erroneous input is given. The function is expected to throw an ArgumentException error.

GeoJSONCreator class uses the ConvexHullCreator class to create geometric shape

61

from a list of coordinate points by using a convex hull algorithm. This instance of the

ConvexHullCreator class is created in the constructor of the GeoJSONGeometry class.

The production version is used since there is no possibility for injections. In the London

style of testing, the ConvexHullCreator instance would be injected, for example, through

the constructor of the system under testing, so that it could be mocked in tests.

Figure 40. Test case where function is expected to throw an exception when given
erroneous input.

Currently, the testing suite consists solely of unit tests. Those have been the easiest to

set up, and they provide the most value in the limited time given for this project. Integra-

tion tests would require extensive configuration or mocking since the database schema

for the construction plan data is complex.

The most important parts of the software to be tested are domain-critical parts containing

business logic. Those are data handling functionalities, which contain geometry creation,

coordinate transformation, and authentication flow. Those unit tests provide the most

value when integration testing is not considered. With integration testing, data reading

and updating with the database, and data sending to the Traficom REST API would be

the most critical parts.

Although the classical style emphasises using actual production instances, shared and

volatile dependencies are replaced with test doubles to allow isolation of the tests. The

current unit tests for this module mocks four dependencies shown in the previous chap-

ter: HttpClient, file system, database, and coordinate transform. DMS Service connector

is not worth mocking at this point since the value generated by mocking those would not

be sufficient compared to used time and effort. Third-party library “Moq” [62] is used

when no better solution is available.

62

Figure 41 shows a test case using both HttpClient and file system mocks. The test case

calls the JWTAuthenticator class's GetAuthorizationHeaderValue method multiple times

in a row and ensures that the access token is once retrieved from Traficom REST API

and other times retrieved from in-memory persistence.

The test case starts by defining a mock for HttpClient. A third-party library, mockhttp, cre-

ated by Richard Szalay[63], is used first to create an HTTP handler, define expected

HTTP requests, and create an HTTP client with a random base address for dependency

injection. After that, application-specific static in-memory settings are set. After that, the

file system mock is set up using the System.IO.Abstractions package [64] created by

TestableIO. The file system mock allows the creation of a virtual file system, which is

used via the injected IFileSystem interface.

Figure 41. Test case where use of previous access token is ensured.

Database connection uses the DbDataReader class, which has no worthy third-party

libraries. Therefore, the IDbClientWrapper interface is mocked using the Moq library, and

63

the DbDataReader class that it returns is mocked with a manually created class that

implements its functionality using in-memory data handling. The coordinate transform

dependency is also mocked using the Moq library.

Different measures can help to determine how effective a testing suite is. Static meas-

urements related to testing that are used with this module are the number of tests, code

coverage, branch coverage, cyclomatic complexity, and cognitive complexity. Coverage

numbers are calculated using the Fine Code Coverage library [65] since only enterprise

version of Visual Studio includes testing coverages. Figure 42 shows the coverage re-

sults. Complexity metrics are calculated with SonarQube static analysis.

Figure 42. Code coverage and branch coverage generated by Fine Code Coverage
library.

The number of tests in the testing suite is 161, with 210 test cases when parametrized

tests are counted as separate. Code coverage of the tests is 87,6 %, and branch cover-

age is 77,6 %. These are sufficient results, considering that there are no integration tests.

Cyclomatic complexity for the whole module is 295, and cognitive complexity is 160.

5.5 Continuous integration

The module created in this research incorporates continuous integration workflow into

its development process. It consists of actions done in local environments by developers,

integrating code into a shared, single repository and automated building, testing, and

analysing.

The source code system is a GIT repository hosted in Azure servers. It has a main branch

where the current version of the module is. Each development cycle begins with the

developer creating a new branch based on the main branch. Development work is then

done in that branch. Automated tests are run in the local environment to ensure quickly

that the new code works.

New code is then pushed to the repository in this separate branch. A pull request is

issued from the development branch to the main branch when development is finished.

The pull request is automatically checked against merge conflicts by the Azure server.

Before the pull request is merged into the main branch, another team member issues a

review of the new code and accepts it or suggests changes. This review process is then

repeated until the review is successful and there are no merge conflicts.

64

After this, the new code is merged into the main branch. The merge automatically triggers

an Azure DevOps pipeline. It consists of setting up testing building and testing environ-

ment in an Azure agent. Then a SonarQube analysis is prepared, the project is built,

automatic tests are run, and finally, SonarQube code analysis is executed. The results

are then visible from the SonarCloud web view. The results for this module are shown in

Figure 43 below. It shows that the code does not contain code smells, failures (bugs),

vulnerabilities, security issues or duplications.

Figure 43. Results from SonarQube scanning.

The code coverage results from SonarQube differ from the Fine Code Coverage because

of the different ways they count code lines. Some lines that are considered code lines by

Fine Code Coverage are not considered that in SonarQube and vice versa.

The Build and automated test job is started manually and done separately on the Jenkins

server after running the Azure pipeline. This build job handles building a production ver-

sion of the software, testing it using automated tests, collecting necessary executables,

libraries, and other documents, creating a single zip folder from them, and moving that

into shared online storage.

Emails from successful and failed pipelines, builds, and tests are sent to involved per-

sonnel. Fast feedback is received, and actions can be taken quickly.

65

6. EVALUATION AND FOLLOW-UP

This chapter provides an overall retrospective of the project. The use of technologies

and implementation of the module regarding requirements and quality are considered,

although Traficom specified many of the technologies used.

Upon this retrospective, possible improvements and next steps are considered. These

would improve the module's quality and safety, improve workflow cycles, and add fea-

tures.

6.1 Fulfilment of requirements

The intended functionality for the first version of this module has been implemented suc-

cessfully. The list of functionalities is short, so the flow of the program is straightforward,

which can be seen in the module design. Implementation difficulties raised from data-

base handling, data reading, and creating some of the test doubles.

Database handling was complex because connections are handled in the MicroSCADA

X DMS600 environment using the OdbcDataReader class. The more commonly used

class, SqlDataReader, could be used, but it would require extra programming and con-

figuration, and it would deviate from other modules in the main software.

Data reading was also complicated to implement because the database's data schema

for construction plans is not in object-based, normalized form. This means that extra

steps had to be made to be able to read the data into object-oriented models in the

program.

Lack of normalization was why the .NET Entity Framework (EF) could not have been

used for database connection and data reading, at least without significant effort. Entity

Framework is designed to work well with object-oriented, normalized data.

Quality control of the project was somewhat successful. Most program parts were tested

with unit tests since necessary external dependencies were replaced with testing dou-

bles. The lack of integration tests diminishes the level of quality control. SonarQube

scanning integrated into development workflow improves failure and vulnerability detec-

tion.

Regardless of the challenges, all software requirements were fulfilled within the limits of

the given restrictions. Quality control of software cannot be overseen, and there is always

something to be improved.

66

Another objective for this work was to improve knowledge of the technologies within Hi-

tachi Energy and its employees. This objective is partly fulfilled. The project provides

basic and some advanced information about the technologies and methodologies used.

Distribution of that information among employees is still required for efficient learning.

The last objective of the project was to provide DSOs with software to automate infra-

structure data exporting to Traficom centralized systems to enable joint construction.

This objective is also partly fulfilled. The software does what is needed to fulfil required

functionalities, but distribution, configuration and production deployment to customer

systems must be done to take full advantage of those features.

6.2 Suitability of used technologies

The list of used technologies for this project is relatively narrow. In this section, all tech-

nologies used in this module and those public ones that affect clients from the Traficom

side are evaluated.

Overall infrastructure for the interface, REST API with CRUD operations, suits this appli-

cation well. Transmitted data is object-oriented, and RESTful principles incorporate au-

thentication fluently. Provided endpoints regarding this module are designed using

RESTful principles.

Used authentication, JWT signed with RSA key, is a well-suited method for this applica-

tion because of its statelessness and presumably relatively sparse use. It allows for a

secure but straightforward authentication flow. A more modern, JWT-based OAuth pro-

tocol could be used, but it cannot be fully argued one way or another without knowing

detailed use cases and user scenarios. It could provide extended features with more

flexibility, but it could also create excess overhead and complexity.

When technologies used in the module are considered, few ones could be improved.

The first one is the database handling and data reading functionality. Entity Framework

would improve simplicity, readability, and maintainability by providing a clean interface

and hiding boilerplate code. It would also make testing easier since it has extensive test-

doubling capabilities available.

The use of different testing frameworks would be another possible improvement regard-

ing technologies. MsTest v2 is Microsoft’s framework, but there are other widely used

ones, such as xUnit or NUnit. By using different testing framework, the test suite could

improve in performance, cleanness, maintainability, and extensibility [66]. Differences

are minor, but if the testing suite grows a lot in size over time, the improvements might

be valuable.

67

6.3 Security considerations

Security plays an essential part in storing and handling critical infrastructure information.

It has been questioned if a centralized information point is secure enough compared to

the data being stored in a decentralized manner by the distribution system operators

[67]. Data being stored in one place increases the risk of it all being leaked simultane-

ously. Jukka-Pekka Juutinen, leader of the cyber security centre agency, argued against

this [68]. He stated that ensuring the security of all systems providing information would

be impossible in a decentralised information system. Many infrastructure owners were

not ready to improve their systems to provide the required information automatically.

Hence, the other option considered was an email-based system where a mediator party

handles data transfer. This system would not have complied with EU directives since

information delivery would not have been possible without undue delay. It was also noted

that email is not a particularly secure way of transferring information.

The verkkotietopiste.fi service, a centralized information point for construction plans that

Traficom has created, has good security from an outside perspective but could have

minor improvements. Without knowing implementation details, other similar authentica-

tion methods compared to JWT, such as OAuth, cannot be thoroughly discussed. There-

fore, the algorithm of the current JWT implementation is the most important part.

The current implementation uses the RS256 (RSASSA-PKCS1-v1_5 with SHA-256) al-

gorithm for JWT signing. Firstly, it must be noted that this algorithm is not broken and is

cryptographically safe on today’s technology, and it is widely used and defaulted in many

implementations. That said, there are better alternatives which are more secure and ef-

fective, such as RSASSA-PSS, ECDSA or EdDSA algorithms. [41]

Another way to improve JWT security would be to implement a JWE structure on top of

the existing JWS. This would also encrypt the JWT message. Would this be a valuable

improvement, considering the costs of it is not discussed here.

Another slight improvement would be the use of better HTTP standard. Currently, the

API uses HTTP/1.1. The use of HTTP/2 or HTTP/3 would provide improved performance.

The last security improvement concerns client machines and the created interface mod-

ule. The client-server currently stores the secrets required for API authentication as plain

text files. Encrypting or another secure storage method would improve the security of

handling them.

68

6.4 Further development

The designed and implemented module is the first version created to fulfil minimum re-

quirements. Quality software development is one of the key elements of the project.

Multiple aspects of testing could be improved. As mentioned, there are no integration

tests in the current testing suite. By creating them, the value of the testing suite would

increase since more comprehensive test cases simulate production use cases better.

Even though there are a significant number of unit tests already, creating more of them

for edge cases that still need to be covered would also be beneficial. Increasing branch

coverage and creating more comprehensive unit testing on data reading functionality

would be beneficial.

Production code can be refactored safely when the testing suite has good coverage, and

tests are not fragile. Refactoring would streamline the software and reduce maintenance

costs by reducing cognitive and cyclomatic complexities. It would simplify current imple-

mentation and make new features more straightforward to implement as part of existing

software. It would be easier for new developers to understand the code and get their

work started.

The test-driven development style was not used with the development of the first version,

but it could be beneficial in the future. It would ensure that testing stays to standard, and

the design of new features would support testability.

Related to testing is continuous integration and the build pipeline. Incorporating an auto-

matic run of tests and SonarQube analyses on every pull request to the main branch

would be beneficial. It would ensure that new code is always sufficient before it is merged

into production code. It is currently up to the developer to manually run branch-specific

tests and analyses.

The continuous integration process consists of an automatic Azure pipeline running So-

narQube analysis and a manual Jenkins build. It would remove repetitiveness and man-

ual work if the build was automatically triggered upon successful tests and analysis from

the Azure pipeline.

When testing and integration workflows are without flaws, it is easy to implement new

functionalities. The created interface module is the first version, so it has minimal fea-

tures. Implementing more functionalities could help clients deliver, handle, and synchro-

nise construction plan data with Traficom systems. An example of functionality could be

the possibility to read and present construction plans that are already stored in the Trafi-

com system.

69

As discussed in the previous section, the module's security could also be improved. Cre-

ating better security practices around storing and handling JWT and RSA data required

for authentication would be an improvement and would patch some vulnerabilities in case

servers get compromised and possibly breached.

After the DSO customers have used the first version of the software, usage feedback

could be collected. Upon this feedback, new features could be designed and imple-

mented, and existing ones could be modified to suit DSO needs better. Since this soft-

ware is entirely for customer usage, it is crucial to communicate with them to fix inaccu-

racies, provide improvements and support their objectives regarding joint construction.

Continuous improvement of software requirements, system design, functionalities, and

quality control ensure that the software can grow to its full potential.

70

REFERENCES

[1] L. Lehtiranta, J.-M. Junnonen, S. Kärnä, and L. Pekuri, Designs, Methods and

 Practices for Research of Project Management. Gower Publishing, Ltd., 2015.

[2] “Directive 2014/61/EU on measures to reduce the cost of deploying high-speed

electronic communications networks.” European Parliament and the Council, May

15, 2014. [Online]. Available: https://eur-lex.europa.eu/legal-

content/en/ALL/?uri=celex:32014L0061

[3] “Laki verkkoinfrastruktuurin yhteisrakentamisesta ja käytöstä 276/2016.”

Accessed: Jun. 21, 2022. [Online]. Available:

https://www.finlex.fi/fi/laki/alkup/2016/20160276

[4] E. P. Oy, “Sähkömarkkinalaki 588/2013.” Accessed: Oct. 26, 2022. [Online].

Available: https://www.finlex.fi/fi/laki/ajantasa/2013/20130588

[5] T. Liikenne- ja viestintävirasto, “Määräys verkkotietojen ja verkon

rakentamissuunnitelmien toimittamisesta.” Finlex, May 04, 2020. Accessed: Jun.

21, 2022. [Online]. Available:

https://www.finlex.fi/data/normit/45988/01_maarays_M71.pdf

[6] “Guideline on electricity transmission system operation.” Accessed: May 23,

2023. [Online]. Available: https://eur-lex.europa.eu/EN/legal-

content/summary/guideline-on-electricity-transmission-system-operation.html

[7] “Liikenne- ja viestintävaliokunnan mietintö LiVM 3/2016 vp.” Accessed: Oct. 26,

2022. [Online]. Available:

https://www.eduskunta.fi:443/FI/vaski/Mietinto/Sivut/LiVM_3+2016.aspx

[8] Liikenne- ja viestintäministeriö, “Laajakaistan yhteisrakentamisdirektiivi,

teknistaloudellinen selvitys.” Liikenne- ja viestintäministeriö, Jun. 09, 2015.

Accessed: Oct. 30, 2022. [Online]. Available: http://urn.fi/URN:ISBN:978-952-

243-457-9

[9] Fingrid. Accessed: May 23, 2023. [Online]. Available: https://www.fingrid.fi/en/

[10] “Hallituksen esitys eduskunnalle laeiksi verkkoinfrastruktuurin

yhteisrakentamisesta ja -käytöstä sekä tietoyhteiskuntakaaren muuttamisesta HE

116/2015.” Finlex, Nov. 12, 2015. Accessed: Oct. 26, 2022. [Online]. Available:

https://www.finlex.fi/fi/esitykset/he/2015/20150116

[11] “Architecture of the World Wide Web, Volume One.” Accessed: Oct. 31, 2022.

[Online]. Available: https://www.w3.org/TR/webarch/

[12] “Help and FAQ - W3C.” Accessed: Oct. 31, 2022. [Online]. Available:

https://www.w3.org/Help/#webinternet

[13] REST API Design Rulebook. Accessed: Oct. 30, 2022. [Online]. Available:

https://learning.oreilly.com/library/view/rest-api-design/9781449317904/

71

[14] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, “Uniform Resource Identifier

(URI): Generic Syntax,” Internet Engineering Task Force, Request for Comments

RFC 3986, Jan. 2005. doi: 10.17487/RFC3986.

[15] H. Nielsen, R. T. Fielding, and T. Berners-Lee, “Hypertext Transfer Protocol –

HTTP/1.0,” Internet Engineering Task Force, Request for Comments RFC 1945,

May 1996. doi: 10.17487/RFC1945.

[16] H. Nielsen et al., “Hypertext Transfer Protocol – HTTP/1.1,” Internet Engineering

Task Force, Request for Comments RFC 2616, Jun. 1999. doi:

10.17487/RFC2616.

[17] “Evolution of HTTP - HTTP | MDN.” Accessed: Nov. 08, 2022. [Online].

Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

[18] “The HTTP Protocol As Implemented In W3.” Accessed: Nov. 08, 2022. [Online].

Available: https://www.w3.org/Protocols/HTTP/AsImplemented.html

[19] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics,” Internet

Engineering Task Force, Request for Comments RFC 9110, Jun. 2022. doi:

10.17487/RFC9110.

[20] M. Thomson and C. Benfield, “HTTP/2,” Internet Engineering Task Force,

Request for Comments RFC 9113, Jun. 2022. doi: 10.17487/RFC9113.

[21] M. Bishop, “HTTP/3,” Internet Engineering Task Force, Request for Comments

RFC 9114, Jun. 2022. doi: 10.17487/RFC9114.

[22] E. Rescorla, “HTTP Over TLS,” Internet Engineering Task Force, Request for

Comments RFC 2818, May 2000. doi: 10.17487/RFC2818.

[23] R. T. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing,” Internet Engineering Task Force, Request for Comments

RFC 7230, Jun. 2014. doi: 10.17487/RFC7230.

[24] “Usage Statistics of Site Elements for Websites.” Accessed: Nov. 10, 2023.

[Online]. Available: https://w3techs.com/technologies/overview/site_element

[25] L. M. Dusseault and J. M. Snell, “PATCH Method for HTTP,” Internet

Engineering Task Force, Request for Comments RFC 5789, Mar. 2010. doi:

10.17487/RFC5789.

[26] Auth0, “Authentication vs. Authorization,” Auth0 Docs. Accessed: Nov. 01, 2022.

[Online]. Available: https://auth0.com/docs/

[27] L. Richardson and S. Ruby, RESTful Web Services. Accessed: Oct. 31, 2022.

[Online]. Available: https://learning.oreilly.com/library/view/restful-web-

services/9780596529260/

[28] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” 2000, [Online]. Available:

https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

72

[29] API Development: A Practical Guide for Business Implementation Success.

Accessed: Nov. 01, 2022. [Online]. Available:

https://learning.oreilly.com/library/view/api-development-a/9781484241400/

[30] “API Evangelist: An Introduction to API Authentication,” Newstex Trade &

Industry Blogs. Accessed: Nov. 01, 2022. [Online]. Available:

https://www.proquest.com/docview/2346189315/citation/DB3710BD9C2947E1P

Q/1

[31] R. Oppliger, Security Technologies for the World Wide Web. Norwood, UNITED

STATES: Artech House, 2002. Accessed: Nov. 01, 2022. [Online]. Available:

http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=227620

[32] “Token Based Authentication Made Easy,” Auth0. Accessed: Nov. 17, 2022.

[Online]. Available: https://auth0.com/learn/token-based-authentication-made-

easy

[33] “Token Based Authentication -- Implementation Demonstration.” Accessed: Nov.

17, 2022. [Online]. Available: https://www.w3.org/2001/sw/Europe/events/foaf-

galway/papers/fp/token_based_authentication/

[34] Archiveddocs, “Simple Web Token (SWT).” Accessed: Nov. 01, 2022. [Online].

Available: https://learn.microsoft.com/en-us/previous-versions/azure/azure-

services/hh781551(v=azure.100)

[35] A. D. Olson, P. Eggert, and K. Murchison, “The Time Zone Information Format

(TZif),” Internet Engineering Task Force, Request for Comments RFC 8536, Feb.

2019. doi: 10.17487/RFC8536.

[36] C. Newman and G. Klyne, “Date and Time on the Internet: Timestamps,” Internet

Engineering Task Force, Request for Comments RFC 3339, Jul. 2002. doi:

10.17487/RFC3339.

[36] “ISO/IEC 21778:2017,” ISO. Accessed: Nov. 01, 2022. [Online]. Available:

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/16/

71616.html

[38] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” Internet

Engineering Task Force, Request for Comments RFC 7519, May 2015. doi:

10.17487/RFC7519.

[39] “Javascript Object Signing and Encryption (JOSE) — jose 0.1 documentation.”

Accessed: Nov. 03, 2022. [Online]. Available:

https://jose.readthedocs.io/en/latest/#overview

[40] M. Jones, “JSON Web Algorithms (JWA),” Internet Engineering Task Force,

Request for Comments RFC 7518, May 2015. doi: 10.17487/RFC7518.

[41] S. Brady, “JWTs: Which Signing Algorithm Should I Use?,” Scott Brady.

Accessed: Feb. 27, 2023. [Online]. Available:

https://www.scottbrady91.com/jose/jwts-which-signing-algorithm-should-i-use

73

[42] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA Cryptography

Specifications Version 2.2,” Internet Engineering Task Force, Request for

Comments RFC 8017, Nov. 2016. doi: 10.17487/RFC8017.

[43] I. Liusvaara, “CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in

JSON Object Signing and Encryption (JOSE),” Internet Engineering Task Force,

Request for Comments RFC 8037, Jan. 2017. doi: 10.17487/RFC8037.

[44] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),” Internet

Engineering Task Force, Request for Comments RFC 7515, May 2015. doi:

10.17487/RFC7515.

[45] A. Rahmatulloh, R. Gunawan, and F. M. S. Nursuwars, “Performance comparison

of signed algorithms on JSON Web Token,” IOP Conference Series. Materials

Science and Engineering, vol. 550, no. 1, Jul. 2019, doi: 10.1088/1757-

899X/550/1/012023.

[46] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE),” Internet Engineering

Task Force, Request for Comments RFC 7516, May 2015. doi:

10.17487/RFC7516.

[47] Software Testing, Second Edition. Accessed: Nov. 29, 2022. [Online]. Available:

https://learning.oreilly.com/library/view/software-testing-second/0672327988/

[48] Unit Testing Principles, Practices, and Patterns. Accessed: Nov. 22, 2022.

[Online]. Available: https://learning.oreilly.com/library/view/unit-testing-

principles/9781617296277/

[49] Software Testing and Continuous Quality Improvement, 3rd Edition. Accessed:

Nov. 29, 2022. [Online]. Available:

https://learning.oreilly.com/library/view/software-testing-and/9781351722209/

[50] The Art of Unit Testing: with Examples in .NET. Accessed: Nov. 22, 2022.

[Online]. Available: https://learning.oreilly.com/library/view/the-art-

of/9781933988276/

[51] J. Horch, Practical Guide to Software Quality Management. Norwood, UNITED

STATES: Artech House, 2003. Accessed: Nov. 22, 2022. [Online]. Available:

http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=227656

[52] G. A. Campbell and S. Sa, “A new way of measuring understandability”.

[53] xUnit Test Patterns: Refactoring Test Code. Accessed: Jan. 22, 2023. [Online].

Available: https://learning.oreilly.com/library/view/xunit-test-

patterns/9780131495050/

[54] “Continuous Integration,” martinfowler.com. Accessed: Feb. 22, 2023. [Online].

Available: https://martinfowler.com/articles/continuousIntegration.html

[55] Continuous Integration in .NET. Accessed: Feb. 22, 2023. [Online]. Available:

https://learning.oreilly.com/library/view/continuous-integration-

in/9781935182559/

74

[56] Continuous Integration: Improving Software Quality and Reducing Risk.

Accessed: Feb. 22, 2023. [Online]. Available:

https://learning.oreilly.com/library/view/continuous-integration-

improving/9780321336385/

[57] Software Design Methodology. Accessed: Aug. 15, 2023. [Online]. Available:

https://learning.oreilly.com/library/view/software-design-

methodology/9780750660754/

[58] “Apache License, Version 2.0.” Accessed: Jan. 31, 2023. [Online]. Available:

https://www.apache.org/licenses/LICENSE-2.0

[58] “Verkkotietopisteen sähköinen rajapinta.”, Traficom. Accessed: Nov. 10, 2023.

[Online]. Available:

https://www.traficom.fi/sites/default/files/media/file/Verkkotietopisteen-

sahkoinen-rajapinta.pdf

[60] karelz, “HttpClient Class (System.Net.Http).” Accessed: Feb. 08, 2023. [Online].

Available: https://learn.microsoft.com/en-

us/dotnet/api/system.net.http.httpclient?view=net-7.0

[61] “Fluent Assertions,” Fluent Assertions. Accessed: Feb. 20, 2023. [Online].

Available: http://www.fluentassertions.com/

[62] “moq.” Moq, Feb. 18, 2023. Accessed: Feb. 20, 2023. [Online]. Available:

https://github.com/moq/moq4

[63] R. Szalay, “MockHttp for HttpClient.” Feb. 10, 2023. Accessed: Feb. 10, 2023.

[Online]. Available: https://github.com/richardszalay/mockhttp

[64] “TestableIO/System.IO.Abstractions.” TestableIO, Feb. 06, 2023. Accessed: Feb.

10, 2023. [Online]. Available:

https://github.com/TestableIO/System.IO.Abstractions

[65] F. Ngwenya, “Fine Code Coverage.” Feb. 16, 2023. Accessed: Feb. 21, 2023.

[Online]. Available: https://github.com/FortuneN/FineCodeCoverage

[66] “NUnit vs. XUnit vs. MSTest: Comparing Unit Testing Frameworks In C#,”

LambdaTest. Accessed: Feb. 25, 2023. [Online]. Available:

https://www.lambdatest.com/blog/nunit-vs-xunit-vs-mstest/

[67] “Lukijan mielipide | Kriittisten infratietojen keskittäminen on valtava

turvallisuusriski,” Helsingin Sanomat. Accessed: Feb. 27, 2023. [Online].

Available: https://www.hs.fi/mielipide/art-2000009226461.html

[68] “Lukijan mielipide | Keskitetyistä tietovarannoista voidaan tehdä turvallisia,”

Helsingin Sanomat. Accessed: Feb. 27, 2023. [Online]. Available:

https://www.hs.fi/mielipide/art-2000009234645.html

75

APPENDIX A: FULL MODULE DIAGRAM

Figure 44 below shows the whole module diagram of the created program. It does not
include testing classes but only production classes.

Figure 44. Full module diagram of the created program.

